• Title/Summary/Keyword: 인과 딥러닝

Search Result 127, Processing Time 0.021 seconds

Proposal of a Monitoring System to Determine the Possibility of Contact with Confirmed Infectious Diseases Using K-means Clustering Algorithm and Deep Learning Based Crowd Counting (K-평균 군집화 알고리즘 및 딥러닝 기반 군중 집계를 이용한 전염병 확진자 접촉 가능성 여부 판단 모니터링 시스템 제안)

  • Lee, Dongsu;ASHIQUZZAMAN, AKM;Kim, Yeonggwang;Sin, Hye-Ju;Kim, Jinsul
    • Smart Media Journal
    • /
    • v.9 no.3
    • /
    • pp.122-129
    • /
    • 2020
  • The possibility that an asymptotic coronavirus-19 infected person around the world is not aware of his infection and can spread it to people around him is still a very important issue in that the public is not free from anxiety and fear over the spread of the epidemic. In this paper, the K-means clustering algorithm and deep learning-based crowd aggregation were proposed to determine the possibility of contact with confirmed cases of infectious diseases. As a result of 300 iterations of all input learning images, the PSNR value was 21.51, and the final MAE value for the entire data set was 67.984. This means the average absolute error between observations and the average absolute error of fewer than 4,000 people in each CCTV scene, including the calculation of the distance and infection rate from the confirmed patient and the surrounding persons, the net group of potential patient movements, and the prediction of the infection rate.

Deep Learning-Based User Emergency Event Detection Algorithms Fusing Vision, Audio, Activity and Dust Sensors (영상, 음성, 활동, 먼지 센서를 융합한 딥러닝 기반 사용자 이상 징후 탐지 알고리즘)

  • Jung, Ju-ho;Lee, Do-hyun;Kim, Seong-su;Ahn, Jun-ho
    • Journal of Internet Computing and Services
    • /
    • v.21 no.5
    • /
    • pp.109-118
    • /
    • 2020
  • Recently, people are spending a lot of time inside their homes because of various diseases. It is difficult to ask others for help in the case of a single-person household that is injured in the house or infected with a disease and needs help from others. In this study, an algorithm is proposed to detect emergency event, which are situations in which single-person households need help from others, such as injuries or disease infections, in their homes. It proposes vision pattern detection algorithms using home CCTVs, audio pattern detection algorithms using artificial intelligence speakers, activity pattern detection algorithms using acceleration sensors in smartphones, and dust pattern detection algorithms using air purifiers. However, if it is difficult to use due to security issues of home CCTVs, it proposes a fusion method combining audio, activity and dust pattern sensors. Each algorithm collected data through YouTube and experiments to measure accuracy.

Deep Learning Based Short-Term Electric Load Forecasting Models using One-Hot Encoding (원-핫 인코딩을 이용한 딥러닝 단기 전력수요 예측모델)

  • Kim, Kwang Ho;Chang, Byunghoon;Choi, Hwang Kyu
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.852-857
    • /
    • 2019
  • In order to manage the demand resources of project participants and to provide appropriate strategies in the virtual power plant's power trading platform for consumers or operators who want to participate in the distributed resource collective trading market, it is very important to forecast the next day's demand of individual participants and the overall system's electricity demand. This paper developed a power demand forecasting model for the next day. For the model, we used LSTM algorithm of deep learning technique in consideration of time series characteristics of power demand forecasting data, and new scheme is applied by applying one-hot encoding method to input/output values such as power demand. In the performance evaluation for comparing the general DNN with our LSTM forecasting model, both model showed 4.50 and 1.89 of root mean square error, respectively, and our LSTM model showed high prediction accuracy.

Design and Implementation of Visitor Access Control System using Deep learning Face Recognition (딥러닝 얼굴인식 기술을 활용한 방문자 출입관리 시스템 설계와 구현)

  • Heo, Seok-Yeol;Kim, Kang Min;Lee, Wan-Jik
    • Journal of Digital Convergence
    • /
    • v.19 no.2
    • /
    • pp.245-251
    • /
    • 2021
  • As the trend of steadily increasing the number of single or double household, there is a growing demand to see who is the outsider visiting the home during the free time. Various models of face recognition technology have been proposed through many studies, and Harr Cascade of OpenCV and Hog of Dlib are representative open source models. Among the two modes, Dlib's Hog has strengths in front of the indoor and at a limited distance, which is the focus of this study. In this paper, a face recognition visitor access system based on Dlib was designed and implemented. The whole system consists of a front module, a server module, and a mobile module, and in detail, it includes face registration, face recognition, real-time visitor verification and remote control, and video storage functions. The Precision, Specificity, and Accuracy according to the change of the distance threshold value were calculated using the error matrix with the photos published on the Internet, and compared with the results of previous studies. As a result of the experiment, it was confirmed that the implemented system was operating normally, and the result was confirmed to be similar to that reported by Dlib.

Generate Korean image captions using LSTM (LSTM을 이용한 한국어 이미지 캡션 생성)

  • Park, Seong-Jae;Cha, Jeong-Won
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.82-84
    • /
    • 2017
  • 본 논문에서는 한국어 이미지 캡션을 학습하기 위한 데이터를 작성하고 딥러닝을 통해 예측하는 모델을 제안한다. 한국어 데이터 생성을 위해 MS COCO 영어 캡션을 번역하여 한국어로 변환하고 수정하였다. 이미지 캡션 생성을 위한 모델은 CNN을 이용하여 이미지를 512차원의 자질로 인코딩한다. 인코딩된 자질을 LSTM의 입력으로 사용하여 캡션을 생성하였다. 생성된 한국어 MS COCO 데이터에 대해 어절 단위, 형태소 단위, 의미형태소 단위 실험을 진행하였고 그 중 가장 높은 성능을 보인 형태소 단위 모델을 영어 모델과 비교하여 영어 모델과 비슷한 성능을 얻음을 증명하였다.

  • PDF

Design and Implementation of Hashtag Recommendation System Based on Image Label Extraction using Deep Learning (딥러닝을 이용한 이미지 레이블 추출 기반 해시태그 추천 시스템 설계 및 구현)

  • Kim, Seon-Min;Cho, Dae-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.4
    • /
    • pp.709-716
    • /
    • 2020
  • In social media, when posting a post, tag information of an image is generally used because the search is mainly performed using a tag. Users want to expose the post to many people by attaching the tag to the post. Also, the user has trouble posting the tag to be tagged along with the post, and posts that have not been tagged are also posted. In this paper, we propose a method to find an image similar to the input image, extract the label attached to the image, find the posts on instagram, where the label exists as a tag, and recommend other tags in the post. In the proposed method, the label is extracted from the image through the model of the convolutional neural network (CNN) deep learning technique, and the instagram is crawled with the extracted label to sort and recommended tags other than the label. We can see that it is easy to post an image using the recommended tag, increase the exposure of the search, and derive high accuracy due to fewer search errors.

Comparison of Fine Grained Classification of Pet Images Using Image Processing and CNN (영상 처리와 CNN을 이용한 애완동물 영상 세부 분류 비교)

  • Kim, Jihae;Go, Jeonghwan;Kwon, Cheolhee
    • Journal of Broadcast Engineering
    • /
    • v.26 no.2
    • /
    • pp.175-183
    • /
    • 2021
  • The study of the fine grained classification of images continues to develop, but the study of object recognition for animals with polymorphic properties is proceeding slowly. Using only pet images corresponding to dogs and cats, this paper aims to compare methods using image processing and methods using deep learning among methods of classifying species of animals, which are fine grained classifications. In this paper, Grab-cut algorithm is used for object segmentation by method using image processing, and method using Fisher Vector for image encoding is proposed. Other methods used deep learning, which has achieved good results in various fields through machine learning, and among them, Convolutional Neural Network (CNN), which showed outstanding performance in image recognition, and Tensorflow, an open-source-based deep learning framework provided by Google. For each method proposed, 37 kinds of pet images, a total of 7,390 pages, were tested to verify and compare their effects.

Copy-Transformer model using Copy-Mechanism and Inference Penalty for Document Abstractive Summarization (복사-메커니즘과 추론 단계의 페널티를 이용한 Copy-Transformer 기반 문서 생성 요약)

  • Jeon, Donghyeon;Kang, In-Ho
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.301-306
    • /
    • 2019
  • 문서 생성 요약은 최근 딥러닝을 이용한 end-to-end 시스템을 통해 유망한 결과들을 보여주고 있어 연구가 활발히 진행되고 있는 자연어 처리 분야 중 하나이다. 하지만 문서 생성 요약 모델을 구성하기 위해서는 대량의 본문과 요약문 쌍의 데이터 셋이 필요한데, 이를 구축하기가 쉽지 않다. 따라서 본 논문에서는 정교한 뉴스 기사 요약 데이터 셋을 기계적으로 구축하는 방법을 제안한다. 또한 딥러닝 기반의 생성 요약은 입력 문서와 다른 정보를 생성하거나, 또는 같은 단어를 반복하여 생성하는 문제점들이 존재한다. 이를 해결하기 위해 요약문을 생성할 때 입력 문서의 내용을 인용하는 복사-메커니즘과, 추론 단계에서 단어 반복을 직접적으로 제어하는 페널티를 사용하면 상대적으로 안정적인 문장이 생성될 수 있다. 그리고 Transformer 모델은 순환 신경망 모델보다 요약문 생성 과정에서 시퀀스 길이가 긴 본문의 정보를 적절히 인코딩하여 줄 수 있는 모델이다. 따라서 본 논문에서는 복사-메커니즘과 추론 단계의 페널티를 이용한 Copy-Transformer 모델을 한국어 문서 생성 요약 데이터에 적용하였다. 네이버 지식iN 질문 요약 데이터 셋과 뉴스 기사 요약 데이터 셋 상에서 실험한 결과, 제안한 모델을 이용한 생성 요약이 비교 모델들 대비 가장 좋은 성능을 보이고 양질의 요약을 생성하는 것을 확인하였다.

  • PDF

CNN-based In-loop Filtering Using Block Information (블록정보를 이용한 CNN기반 인 루프 필터)

  • Kim, Yangwoo;Lee, Yung-lyul
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.11a
    • /
    • pp.27-29
    • /
    • 2019
  • VVC(Versatile Video Coding)는 입력 YUV영상을 CTU(Coding Tree Unit)으로 분할하고, 다시 이를 QTBTTT(Quad Tree, Binary Tree, Ternery Tree)로 최적의 블록으로 분할하고 각각의 블록을 공간적, 시간적 정보를 이용하여 예측하고 예측블록과 원본블록의 차분신호를 변환, 양자화를 통해 전송한다. 이를 위해 여러가지 인코딩정보가 디코더에 전송되며 이를 이용하여 디코더는 인코더와 똑같은 순서로 영상을 복원 할 수 있다. 본 논문에서는 이러한 VVC 인코더에서 반드시 전송하는 정보를 추가적으로 이용하여 딥러닝 기반의 Convolutional Neural Netwrok로 영상의 압축률 및 화질개선 하는 방법을 제안한다.

  • PDF

Performance Evaluation of Automatic Segmentation based on Deep Learning and Atlas according to CT Image Acquisition Conditions (CT 영상획득 조건에 따른 딥 러닝과 아틀라스 기반의 자동분할 성능 평가)

  • Jung Hoon Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.3
    • /
    • pp.213-222
    • /
    • 2024
  • This study analyzed the volumes generated by deep learning and atlas-based automatic segmentation methods, as well as the Dice similarity coefficient and 95% Hausdorff distance, according to the conditions of conduction voltage and conduction current in computed tomography for lung radiotherapy. The first result, the volumes generated by the atlas-based smart segmentation method showed the smallest volume change as a function of the change in tube voltage and tube current, while Aview RT ACS and OncoStudio using deep learning showed smaller volumes at tube currents lower than 100 mA. The second result, the Dice similarity coefficient, showed that Aview RT ACS was 2% higher than OncoStuido, and the 95% Hausdorff distance results also showed that Aview RT ACS analyzed an average of 0.2-0.5% higher than OncoStudio. However, the standard deviation of the respective results for tube current and tube voltage is lower for OncoStudio, which suggests that the results are consistent across volume variations. Therefore, caution should be exercised when using deep learning-based automatic segmentation programs at low perfusion voltages and low perfusion currents in CT imaging conditions for lung radiotherapy, and similar results were obtained with conventional atlas-based automatic segmentation programs at certain perfusion voltages and perfusion currents.