• Title/Summary/Keyword: 인과 딥러닝

Search Result 127, Processing Time 0.024 seconds

Improvement of Mask-RCNN Performance Using Deep-Learning-Based Arbitrary-Scale Super-Resolution Module (딥러닝 기반 임의적 스케일 초해상도 모듈을 이용한 Mask-RCNN 성능 향상)

  • Ahn, Young-Pill;Park, Hyun-Jun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.3
    • /
    • pp.381-388
    • /
    • 2022
  • In instance segmentation, Mask-RCNN is mostly used as a base model. Increasing the performance of Mask-RCNN is meaningful because it affects the performance of the derived model. Mask-RCNN has a transform module for unifying size of input images. In this paper, to improve the Mask-RCNN, we apply deep-learning-based ASSR to the resizing part in the transform module and inject calculated scale information into the model using IM(Integration Module). The proposed IM improves instance segmentation performance by 2.5 AP higher than Mask-RCNN in the COCO dataset, and in the periment for optimizing the IM location, the best performance was shown when it was located in the 'Top' before FPN and backbone were combined. Therefore, the proposed method can improve the performance of models using Mask-RCNN as a base model.

Inverter-Based Solar Power Prediction Algorithm Using Artificial Neural Network Regression Model (인공 신경망 회귀 모델을 활용한 인버터 기반 태양광 발전량 예측 알고리즘)

  • Gun-Ha Park;Su-Chang Lim;Jong-Chan Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.2
    • /
    • pp.383-388
    • /
    • 2024
  • This paper is a study to derive the predicted value of power generation based on the photovoltaic power generation data measured in Jeollanam-do, South Korea. Multivariate variables such as direct current, alternating current, and environmental data were measured in the inverter to measure the amount of power generation, and pre-processing was performed to ensure the stability and reliability of the measured values. Correlation analysis used only data with high correlation with power generation in time series data for prediction using partial autocorrelation function (PACF). Deep learning models were used to measure the amount of power generation to predict the amount of photovoltaic power generation, and the results of correlation analysis of each multivariate variable were used to increase the prediction accuracy. Learning using refined data was more stable than when existing data were used as it was, and the solar power generation prediction algorithm was improved by using only highly correlated variables among multivariate variables by reflecting the correlation analysis results.

Deep Learning Model for Incomplete Data (불완전한 데이터를 위한 딥러닝 모델)

  • Lee, Jong Chan
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.2
    • /
    • pp.1-6
    • /
    • 2019
  • The proposed model is developed to minimize the loss of information in incomplete data including missing data. The first step is to transform the learning data to compensate for the loss information using the data extension technique. In this conversion process, the attribute values of the data are filled with binary or probability values in one-hot encoding. Next, this conversion data is input to the deep learning model, where the number of entries is not constant depending on the cardinality of each attribute. Then, the entry values of each attribute are assigned to the respective input nodes, and learning proceeds. This is different from existing learning models, and has an unusual structure in which arbitrary attribute values are distributedly input to multiple nodes in the input layer. In order to evaluate the learning performance of the proposed model, various experiments are performed on the missing data and it shows that it is superior in terms of performance. The proposed model will be useful as an algorithm to minimize the loss in the ubiquitous environment.

Modbus TCP based Solar Power Plant Monitoring System using Raspberry Pi (라즈베리파이를 이용한 Modbus TCP 기반 태양광 발전소 모니터링 시스템)

  • Park, Jin-Hwan;Kim, Chang-Bok
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.6
    • /
    • pp.620-626
    • /
    • 2020
  • This research propose and simulate a solar power generation system monitoring system based on Modbus TCP communication using RaspberryPi, an IOT equipment, as a master and an inverter as a slave. In this model, various sensors are added to the RaspberryPi to add necessary information for monitoring solar power plants, and power generation prediction and monitoring information are transmitted to the smart phone through real-time power generation prediction. In addition, information that is continuously generated by the solar power plant is built on the server as big data, and a deep learning model for predicting power generation is trained and updated. As a result of the study, stable communication was possible based on Modbus TCP with the Raspberry Pi in the inverter, and real-time prediction was possible with the deep learning model learned in the Raspberry Pi. The server was able to train various deep learning models with big data, and it was confirmed that LSTM showed the best error with a learning error of 0.0069, a test error of 0.0075, and an RMSE of 0.0866. This model suggested that it is possible to implement a real-time monitoring system that is simpler, more convenient, and can predict the amount of power generation for inverters of various manufacturers.

Prediction of water level in sewer pipes using machine learning (기계학습을 활용한 하수관로 수위 예측)

  • Heesung Lim;Hyunuk An;Hyojin Lee;Inhyeok Song
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.93-93
    • /
    • 2023
  • 최근 범지구적인 기후변화로 인해 도시유역의 홍수 발생 빈도가 빈번하게 발생하고 있다. 이로 인해 불투수성이 큰 도시지역의 침수 등의 자연재해 증가로 인명 및 재산피해가 발생하고 있다. 이에 따라 하수도의 제 기능을 수행하고 있다면 문제가 없지만 이상기후로 인한 기록적인 폭우에 의해 침수가 발생하고 있다. 홍수 및 집중호우와 같은 극치사상의 발생빈도가 증가됨에 따라 강우 사상의 변동에 따른 하수관로의 수위를 예측하고 침수에 대해 대처하기 위해 과거 수위에 따른 수위 예측은 중요할 것으로 판단된다. 본 연구에서는 수위 예측 연구에 많이 활용되고 있는 시계열 학습에 탁월한 LSTM 알고리즘을 활용한 하수관로 수위 예측을 진행하였다. 데이터의 학습과 검증을 수행하기 위해 실제 하수관로 수위 데이터를 수집하여 연구를 수행하였으며, 대상자료는 서울특별시 강동구에 위치한 하수관로 수위 자료를 활용하였다. 하수관로 수위 예측에는 딥러닝 알고리즘 RNN-LSTM 알고리즘을 활용하였으며, RNN-LSTM 알고리즘은 하천의 수위 예측에 우수한 성능을 보여준 바 있다. 1분 뒤 하수관로 수위 예측보다 5분, 10분 뒤 또는 1시간 3시간 등 다양한 분석을 실시하였다. 데이터 분석을 위해 하수관로 수위값 변동이 심한 1주일을 선정하여 분석을 실시하였다. 연구에는 Google에서 개발한 딥러닝 오픈소스 라이브러리인 텐서플로우를 활용하였으며, 하수관로 수위 고유번호 25-0001을 대상으로 예측을 하였다. 학습에는 2012년 ~ 2018년의 하수관로 수위 자료를 활용하였으며, 모형의 검증을 위해 결정계수(R square)를 이용하여 통계분석을 실시하였다.

  • PDF

Implementation of Face-Touching Action Recognition System based on Deep Learning for Preventing Contagious Diseases (전염병 확산 방지를 위한 딥러닝 기반 얼굴 만지기 행동 인식 연구)

  • Cho, Sungman;Kim, Minjee;Choi, Joonmyeong;Kim, Taehyung;Park, Juyoung;Kim, Namkug
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.630-633
    • /
    • 2020
  • 무의식적인 손-얼굴의 접촉으로 인한 감염의 문제점을 해결하기 위해, 얼굴 만지기 행동을 인식할 필요가 있다. 본 연구는 최근 각광을 받는 딥러닝 기술을 이용하여 비디오 영상에서 얼굴 만지기 행동 인식에 대한 연구이다. 우선, 비디오 영상에서 얼굴 만지기와 관련된 11 가지 행동에 대한 시, 공간적 특징을 컨볼루션 신경망을 통해 추출한다. 추출된 정보는 각 행동 레이블로 인코딩되어 비디오 영상에서 얼굴 만지기 행동을 분류한다. 또한, 3D, 2D 컨볼루션 신경망의 대표 네트워크인 I3D, MobileNet v3에 대해 비교 실험을 진행한다. 제안하는 시스템을 적용하여 인간의 행동을 분류하는 실험을 진행했을 때, 얼굴을 만지는 행동을 99%의 확률로 구분했다. 이 시스템을 이용하여 일반인이 무의식적인 얼굴 만지기 행동에 대해서 정량적으로 또는 적시적으로 인식을 하여, 안전한 위생 습관을 확립하여 감염의 확산방지에 도움을 줄수 있기를 바란다.

  • PDF

Blurring of Swear Words in Negative Comments through Convolutional Neural Network (컨볼루션 신경망 모델에 의한 악성 댓글 모자이크처리 방안)

  • Kim, Yumin;Kang, Hyobin;Han, Suhyun;Jeong, Hieyong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.2
    • /
    • pp.25-34
    • /
    • 2022
  • With the development of online services, the ripple effect of negative comments is increasing, and the damage of cyber violence is rising. Various methods such as filtering based on forbidden words and reporting systems prevent this, but it is challenging to eradicate negative comments. Therefore, this study aimed to increase the accuracy of the classification of negative comments using deep learning and blur the parts corresponding to profanity. Two different conditional training helped decide the number of deep learning layers and filters. The accuracy of 88% confirmed with 90% of the dataset for training and 10% for tests. In addition, Grad-CAM enabled us to find and blur the location of swear words in negative comments. Although the accuracy of classifying comments based on simple forbidden words was 56%, it was found that blurring negative comments through the deep learning model was more effective.

Prediction of Software Fault Severity using Deep Learning Methods (딥러닝을 이용한 소프트웨어 결함 심각도 예측)

  • Hong, Euyseok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.6
    • /
    • pp.113-119
    • /
    • 2022
  • In software fault prediction, a multi classification model that predicts the fault severity category of a module can be much more useful than a binary classification model that simply predicts the presence or absence of faults. A small number of severity-based fault prediction models have been proposed, but no classifier using deep learning techniques has been proposed. In this paper, we construct MLP models with 3 or 5 hidden layers, and they have a structure with a fixed or variable number of hidden layer nodes. As a result of the model evaluation experiment, MLP-based deep learning models shows significantly better performance in both Accuracy and AUC than MLPs, which showed the best performance among models that did not use deep learning. In particular, the model structure with 3 hidden layers, 32 batch size, and 64 nodes shows the best performance.

Dual Translation Imitating Brain-To-Brain Coupling for Better Encoder Representations (더 좋은 인코더 표현을 위한 뇌 동기화 모방 이중 번역)

  • Choi, GyuHyeon;Kim, Seon Hoon;Jang, HeonSeok;Kang, Inho
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.333-338
    • /
    • 2019
  • 인코더-디코더(Encoder-decoder)는 현대 기계 번역(Machine translation)의 가장 기본이 되는 모델이다. 인코딩은 마치 인간의 뇌가 출발어(Source language) 문장을 읽고 이해를 하는 과정과 유사하고, 디코딩은 뇌가 이해한 의미를 상응하는 도착어(Target language) 문장으로 재구성하는 행위와 비슷하다. 그렇다면 벡터로 된 인코더 표현은 문장을 읽고 이해함으로써 변화된 뇌의 상태에 해당한다고 볼 수 있다. 사람이 어떤 문장을 잘 번역하기 위해서는 그 문장에 대한 이해가 뒷받침되어야 하는 것처럼, 기계 역시 원 문장이 가진 의미를 제대로 인코딩해야 향상된 성능의 번역이 가능할 것이다. 본 논문에서는 뇌과학에서 뇌 동기화(Brain-to-brain coupling)라 일컫는 현상을 모방해, 출발어와 도착어의 공통된 의미를 인코딩하여 기계 번역 성능 향상에 도움을 줄 수 있는 이중 번역 기법을 소개한다.

  • PDF

A cough detection used multi modal learning (멀티 모달 학습을 이용한 기침 탐지)

  • Choi, Hyung-Tak;Back, Moon-Ki;Kang, Jae-Sik;Lee, Kyu-Chul
    • Annual Conference of KIPS
    • /
    • 2018.05a
    • /
    • pp.439-441
    • /
    • 2018
  • 딥 러닝의 높은 성능으로 여러 분야에 사용되며 기침 탐지에서도 수행된다. 이 때 기침과 유사한 재채기, 큰 소리는 단일 데이터만으로는 구분하기에 한계가 있다. 본 논문에서는 기존의 오디오 데이터와 오디오 데이터를 인코딩 한 스펙트로그램 이미지 데이터를 함께 학습하는 멀티 모달 딥 러닝을 적용하는 방법을 사용한다.