• Title/Summary/Keyword: 인공 태양

Search Result 317, Processing Time 0.025 seconds

Effect of Different Light Emitting Diode (LED) Lights on the Growth Characteristics and the Phytochemical Production of Strawberry Fruits during Cultivation (파장별 LED광이 딸기의 생장 특성과 생리 활성 물질 형성에 미치는 효과)

  • Choi, Hyo Gil;Kwon, Joon Kook;Moon, Byoung Yong;Kang, Nam Jun;Park, Kyoung Sub;Cho, Myeong Whan;Kim, Young Cheol
    • Horticultural Science & Technology
    • /
    • v.31 no.1
    • /
    • pp.56-64
    • /
    • 2013
  • Recent unusual weather due to global warming causes shortage of daily sunlight and constitutes one of the primary reasons for agricultural damages. LED light sources are frequently utilized to compensate for the shortage of sunlight in greenhouse agriculture. The present study is aimed at evaluating formations of phytochemicals as well as growth characteristics of mature strawberry fruits ('Daewang' cultivar) during cultivation in a closed growth chamber equipped with artificial LED light as a sole light source. Each LED light of blue (448 nm), red (634 and 661 nm) or mixed blue plus red (blue:red = 3:7) was separately supplied and the intensity of each light was adjusted to $200{\pm}1{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ at plant level with a photoperiod consisted of 16 hours light and 8 hours darkness. Strawberries grown under mixed LED light of blue and red wavelengths showed a higher production of fruits than those grown under other LED treatments. Fructose, one of the free sugars, increased in mixed LED light-grown fruits. Anthocyanin contents were elevated remarkably in the mixed LED light-grown fruits compared with those in other LED treatments. Contrastingly, contents of total phenolics and flavonoids were not of much different from one another among the fruits treated with various LED lights. On the other hand, ripening of strawberry fruits was found to be faster when grown under blue LED light compared with other LED treatments. Moreover, antioxidant activities of blue or red LED light-grown fruits, respectively, were significantly higher than those of mixed LED light-grown fruits. We suggest that when daylight is in shortage during cultivation in a greenhouse, supplementation of sunlight with LED light, which is composed of blue and red wavelengths, could be useful for the enhancement of productivity as well as of free sugar content in strawberry fruits. In addition, for the strawberry culture in the plant factory, selective adoption of LED light wavelength would be required to accomplish the purpose of controlling fruit maturation time as well as of enhancing contents of sugars and antioxidants of fruits.

Object-based Building Change Detection Using Azimuth and Elevation Angles of Sun and Platform in the Multi-sensor Images (태양과 플랫폼의 방위각 및 고도각을 이용한 이종 센서 영상에서의 객체기반 건물 변화탐지)

  • Jung, Sejung;Park, Jueon;Lee, Won Hee;Han, Youkyung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_2
    • /
    • pp.989-1006
    • /
    • 2020
  • Building change monitoring based on building detection is one of the most important fields in terms of monitoring artificial structures using high-resolution multi-temporal images such as CAS500-1 and 2, which are scheduled to be launched. However, not only the various shapes and sizes of buildings located on the surface of the Earth, but also the shadows or trees around them make it difficult to detect the buildings accurately. Also, a large number of misdetection are caused by relief displacement according to the azimuth and elevation angles of the platform. In this study, object-based building detection was performed using the azimuth angle of the Sun and the corresponding main direction of shadows to improve the results of building change detection. After that, the platform's azimuth and elevation angles were used to detect changed buildings. The object-based segmentation was performed on a high-resolution imagery, and then shadow objects were classified through the shadow intensity, and feature information such as rectangular fit, Gray-Level Co-occurrence Matrix (GLCM) homogeneity and area of each object were calculated for building candidate detection. Then, the final buildings were detected using the direction and distance relationship between the center of building candidate object and its shadow according to the azimuth angle of the Sun. A total of three methods were proposed for the building change detection between building objects detected in each image: simple overlay between objects, comparison of the object sizes according to the elevation angle of the platform, and consideration of direction between objects according to the azimuth angle of the platform. In this study, residential area was selected as study area using high-resolution imagery acquired from KOMPSAT-3 and Unmanned Aerial Vehicle (UAV). Experimental results have shown that F1-scores of building detection results detected using feature information were 0.488 and 0.696 respectively in KOMPSAT-3 image and UAV image, whereas F1-scores of building detection results considering shadows were 0.876 and 0.867, respectively, indicating that the accuracy of building detection method considering shadows is higher. Also among the three proposed building change detection methods, the F1-score of the consideration of direction between objects according to the azimuth angles was the highest at 0.891.

Treatment of Cu(II)-EDTA using Solar/$TiO_2$ Photocatalysis (태양광/$TiO_2$ 광산화를 이용한 Cu(II)-EDTA의 제거)

  • Shin, In-Soo;Lee, Seung-Mok;Yang, Jae-Kyu;Shin, Won-Tae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.2
    • /
    • pp.163-169
    • /
    • 2005
  • Photocatalytic oxidation of Cu(II)-EDTA has been studied using solar/$TiO_2$ photocatalysis as an energy source. Photocatalysis efficiency on the treatment of Cu(II)-EDTA was investigated using different types of solar collectors as well as by variation of the angles of solar collector solar light intensities, flow rates, and areas of solar collector. effect of $H_2O_2$ and types of $TiO_2$ catalyst on the treatment of Cu(II)-EDTA was also investigated. Removal of Cu(II) and DOC was favorable with a hemispherical collector than with a flat collector Removal of Cu(II) and DOC increased with increasing angles of solar collector up to $38^{\circ}$. Slurry type $TiO_2$ showed four-times higher removal efficiency than immobilized type $TiO_2$. Removal of both Cu(II) and DOC at a clear sky of solar light intensity ranging from 0.372 to $2.265\;mW/cm^2$ was greater than removal at a cloudy day of solar light intensity ranging from 0.038 to $1.129\;mW/cm^2$. From the result of this research that the removal efficiency of Cu(II) and DOC increased as the solar light intensity increased, it can be inferred that quantum yield in the destruction of Cu(II)-EDTA may directly related with the solar light intensity. Removal of Cu(II) increased as increasing the area of solar collector and was similar at lower flow rates white removal of Cu(II) was interfered at higher flow rates. When immobilized $TiO_2$ was used, removal efficiency of Cu(II) increased in the presence of $H_2O_2$ while negligible effect was found in the use of $TiO_2$ slurry.

Predicting Forest Gross Primary Production Using Machine Learning Algorithms (머신러닝 기법의 산림 총일차생산성 예측 모델 비교)

  • Lee, Bora;Jang, Keunchang;Kim, Eunsook;Kang, Minseok;Chun, Jung-Hwa;Lim, Jong-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.1
    • /
    • pp.29-41
    • /
    • 2019
  • Terrestrial Gross Primary Production (GPP) is the largest global carbon flux, and forest ecosystems are important because of the ability to store much more significant amounts of carbon than other terrestrial ecosystems. There have been several attempts to estimate GPP using mechanism-based models. However, mechanism-based models including biological, chemical, and physical processes are limited due to a lack of flexibility in predicting non-stationary ecological processes, which are caused by a local and global change. Instead mechanism-free methods are strongly recommended to estimate nonlinear dynamics that occur in nature like GPP. Therefore, we used the mechanism-free machine learning techniques to estimate the daily GPP. In this study, support vector machine (SVM), random forest (RF) and artificial neural network (ANN) were used and compared with the traditional multiple linear regression model (LM). MODIS products and meteorological parameters from eddy covariance data were employed to train the machine learning and LM models from 2006 to 2013. GPP prediction models were compared with daily GPP from eddy covariance measurement in a deciduous forest in South Korea in 2014 and 2015. Statistical analysis including correlation coefficient (R), root mean square error (RMSE) and mean squared error (MSE) were used to evaluate the performance of models. In general, the models from machine-learning algorithms (R = 0.85 - 0.93, MSE = 1.00 - 2.05, p < 0.001) showed better performance than linear regression model (R = 0.82 - 0.92, MSE = 1.24 - 2.45, p < 0.001). These results provide insight into high predictability and the possibility of expansion through the use of the mechanism-free machine-learning models and remote sensing for predicting non-stationary ecological processes such as seasonal GPP.

Study on the Controlling Mechaniques of the Environmental Factors in the Mushroom Growing House in Chonnam Province (전남 지방에 있어서의 양송이 재배에 최적한 환경조건 조절법 분석에 관한 연구)

  • Chung, Byung-Jae;Lee, Eun-Chol
    • Journal of the Korean Wood Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.32-34
    • /
    • 1974
  • The important results which have been obtained in the investigation can be recapitulated as follows. 1. As demonstrated by the experimental results and analyses concerning their effects in the on-ground type mushroom house, the constructions in relation to the side wall and ceiling of the experimental house showed a sufficient heat insulation on effect to protect insides of the house from outside climatic conditions. 2. As the effect on the solar type experimental mushroom house which was constructed in a half basement has been shown by the experimental results and analyses, it has been proved to be effective for making use of solar heat. However there were found two problems to be improved for putting solar house to practical use in the farm mushroom growing: (1) the construction of the roof and ceiling should be the same as for the on ground type house, and (2) the solar heat generating system should be reconstructed properly. 3. Among several ventilation systems which have been studied in the experiments, the underground earthen pipe and ceiling ventilation, and vertical side wall and ceiling ventilation systems have been proved to be most effective for natural ventilation. 4. The experimental results have shown that ventilation systems such as the vertical side wall and underground ventilation systems are suitable to put to practical use as natural ventilation systems for farm mushroom house. These ventilation systems can remarkably improve the temperature of fresh air which is introduced into the house by heat transfers within the ventilation passages, so as to approach to the desired temperature of the house without any cooling or heating operation. For example, if it is assuming that X is the outside temperature and Y is the amount of temperature adjustment made by the influence of the ventilation system, the relationships that exist between X and Y can be expressed by the following regression lines. Underground iron pipe ventilation system. Y=0.9X-12.8 Underground earthen pipe ventilation system. Y=0.96X-15.11 Vertical side wall ventilation system. Y=0.94X-17.57 5. The experimental results have 8hown that the relationships existing between the admitted and expelled air and the $CO_2$ concentration can be described with experimental regression lines or an exponent equation as follows: 5.1 If it is assumed that X is an air speed cm/sec. and Y is an expelled air speed in cm/sec. in a natural ventilation system, since the Y is a function of the X, the relationships that exist between X and Y can be expressed by the regression lines shown below: 5.2 If it IS assumed that X is an admitted volume of air in $m^3$/hr. and Y is an expelled volume of air in $m^3$/hr. in a natural ventilation system, since the Y is a function of the X, the relationships that exist between X and Y can be expressed by the regression lines shown below. 5.3 If it is assumed that expelled air speed in emisec. and replacement air speed in cm/sec. at the bed surface in a natural ventilation system are shown as X and Y. respectively, since the Y is a function of the X. the relationships that exist between X and Y can be expressed by the following regression line: GE(100%)-CV (50%) ventilation system. Y=-0.54X+0.84 5.4 If it is assumed that the replacement air speed in cm/sec. at the bed surface is shown as X, and $CO_2$ concentration which is expressed by multiplying 1000 times the actual value of $CO_2$ % is shown as Y, in a natural ventilation system, since the Y is a function of the X, the relationships that exist between X and Y can be expressed by the following regression line: GE(100%)-CV(50%) ventilation system. Y=114.53-6.42X 5.5 If it is assumed that the expelled volume of air is shown as X and the $CO_2$ concencration which is expressed by multiplying 1000 times the actual of $CO_2$% is shown as Y in a natural ventilation system, since the Y is a function of the X, the relationships that exist between X and Y can be expressed by the following exponent equation: GE(100%)-CV(50%) ventilation system. Y=$127.18{\times}1.0093^{-x}$ 5.6 The experimental results have shown that the ratios of the cross sectional area of the GE and CV vent to the total cubic capacity of the house, required for providing an adequate amount of air in a natural ventilation system, can be estimated as follows: GE(admitting vent of the underground ventilation) 0.3-0.5% (controllable) CV(expelling vent of the ceiling ventilation) 0.8-1.0% (controllable) 6. Among several heating devices which were studied in the experiments, the hot-water boilor which wasmodified to be fitted both as hot-water boiler and as a pressureless steam-water was found most suitable for farm mushroom growing.

  • PDF

Physico-Chemical Environment and Productivity of the Phytoplankton Community in the Jido Pond Ecosystem (지도지생태계의 물리화학적환경과 식물성 플랭크톤군집의 생산성)

  • Song Seung-Dal;M. Anwarul Huque
    • Journal of environmental and Sanitary engineering
    • /
    • v.5 no.2
    • /
    • pp.117-122
    • /
    • 1990
  • The Jido Pond system was investigated from April, 1979 through March, 1980, in respect of seasonal changes in physico-chemical factors: i.e., temperature, pH, DO, BOD, COD, $Cl^-, \; Mg^{++}$, alkalinity, detergent, $SiO_2, PO_4\;^{3-}, NH_4\;^+, NO_2\;^-, NO_3\;^-$, total N, OM and OC; phytoplankton community growth; and the ecosystem metabolism. The phytoplankton community was represented by 23 species belonging to Chlorophyta, Bacillariophyta and Cyanophyta; each sharing 11, 9 3 respectively. The Chlorophyceans dominated the phytoplankton community contributing 75% of the total ?미 counts. The ranges of biotic diversity indices were, d, 0.85~2.80; H, 1.10~2.40; c, 0.13~0/40; and 3, 0.56~0.90. The chlorophyll standing crop varied in between 0.043 and 0.385g/$\textrm{cm}^2$ surface area. The ranges of photosynthetic and respiratory rates were 0.36~4.50; and 0.10~1.40 $O_2$ mg/1/hr, respectively. The monthly areal net primary production varied from 23.9 to 305.1C g/$\textrm{m}^2$/month. The Eu of the net production seasonally varied in between 0.31 and 7.80%, and the annual mean was 2.44%. The annual turnover times of phosphorus and nitrogen were 20 and 3 days, respectively.

  • PDF

A Design and Implementation of Control and Management System for Water Culture Device using Solar Tracking Method (광원 트래킹 기법을 이용한 수경재배기 제어 관리 시스템 설계 및 구현)

  • Park, Sung-Kyun;Jung, Se-Hoon;Oh, Min-Joo;Sim, Chun-Bo;Park, Dong-Gook;You, Kang-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.2
    • /
    • pp.231-242
    • /
    • 2014
  • It is throwing the spotlight on the cultivation crops about high quality crops and productivity improvement per unit area because of rapid climate change caused by global warming. Therefore, we propose a water culture management of circulation nutrient method control system applies to solar tracking method not using traditional method of deep flow technique and artificial light source. We design it in the form of the circulation nutrient method in waterway of a certain amount of nutrient solution and water flowed into the way of circular. In addition, we design a multistage structure in pyramid shape which be possible continuous photosynthesis action to crops of water culture bottom part. Also, solar tracking method is designed five sensor method of center hole sensor method for tracking shadow of solar light not using traditional two hole, four hole sensor method. Finally, through the water culture device applies to solar light tracking method was not introduced in existing study yet, we can reduce growth speed of crops which be possible continuous photosynthesis action to crops. Moreover, We can expect high productivity of per unit area which be possible all crops can be offered growth environment of same type by using form of pyramid shape of multistage structure without top or bottom part.

The Effect of Initial pH and Dose of $TiO_2$ on Chloroform Removal in Photocatalytic Process using Compound Parabolic Concentrator Reactor System (CPCs를 이용한 $TiO_2$ 광촉매반응공정에서 초기 pH와 촉매농도가 클로로포름 분해에 미치는 영향)

  • Cho, Sang-Hyun;Cui, Mingcan;Nam, Sang-Geon;Jung, Hee-Suk;Khim, Jee-Hyeong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.12
    • /
    • pp.1147-1153
    • /
    • 2010
  • To evaluate the solar photocatalytic degradation efficiency of chloroform in a real solar-light driven compound parabolic concentrators (CPCs) system, $TiO_2$ was irradiated with a metalhalide lamp (1000 W), which has a similar wavelength to sunlight. The results were applied to a pilot scale reactor system by converting the data to a standardized illumination time. In addition, the effects of initial pH and the $TiO_2$ dose on the photocatalytic degradation of chloroform were investigated. The results were compared with the specific surface area (S.S.A) and particle size of $TiO_2$, which changed according to the pH, to determine the relationship between the S.S.A, particle size and the photocatalytic degradation of chloroform. The experiment was carried out at pH 4~7 using 0.1, 0.2, 0.4 g/L of $TiO_2$. The particle size and specific surface area of $TiO_2$ were measured. There was no significant difference between the variables. However, pH affects the particle size distribution and specific surface area of $TiO_2$. Inaddition, the activation of a photocatalyst did not show a linear relationship with the specific surface area of $TiO_2$ in the photocatalytic degradation of chloroform.

Development of an Imaging-DOAS System for 2-D Remote Sensing of Atmospheric Gases (대기가스오염물질의 이차원 원격 모니터링을 위한 Imaging-DOAS 개발)

  • Lee, Han-Lim;Lee, Chul-Kyu;Jung, Jin-Sang;Park, Jeong-Eun;Kim, Young-Joon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.2
    • /
    • pp.150-157
    • /
    • 2006
  • Spatially resolved remote identification and quantification of trace gases in the atmosphere is desirable in various fields of scientific research as well as in public security and industrial contexts. Environmental observations investigating causes, extent md consequences of air pollution are of fundamental interest. We present an Imaging-DOAS system, a ground based remote sensing instrument that allows spatially resolved mapping of atmospheric trace gases by a differential optical absorption spectroscopy(DOAS) with sun scattered light as the light source. A passive DOAS technique permits the identification and quantification of various gases, e.g., $NO_2,\;SO_2,\;and\;CH_2O$, from their differential absorption structures with high sensitivity. The Imaging-DOAS system consists of a scanning mirror, a focusing lens, a spectrometer, a 2-D CCD, ad the integral control software. An imaging spectrometer simultaneously acquires spectral information on the incident light in one spatial dimension(column) and sequentially scans the next spatial dimension with a motorized scanning mirror. The structure of the signal acquisition system is described in detail and the evaluation method is also briefly discussed. Applications of imaging of the $NO_2$ contents in the exhaust plumes from a power plant are presented.

Occurrence of Micro-cracking According to Bagging Paper in 'Mansoo' Pear Fruits (과실 봉지에 따른 배 '만수' 품종의 미세 열과 발생)

  • Choi, Jin-Ho;Yim, Sun-Hee;Kim, Sung-Jong;Lee, Han-Chan;Kwon, YongHee
    • Horticultural Science & Technology
    • /
    • v.33 no.4
    • /
    • pp.479-485
    • /
    • 2015
  • This study was conducted to study the factors inducing micro-cracking and determine proper practices to reduce its occurrence in 'Mansoo' pear fruits. Micro-cracking was observed on ripe fruits. Occurrence of micro-cracking was closely related to sun duration time in August. Micro-cracking occurred severely with shorter sun duration, but weakly with longer sun duration and continuous sunlight. Micro-cracking fruits occurred more frequently in trees with a pergola training system than in those with Y-trellis, but there was no difference between the irrigated and non-irrigated groups. While no micro-cracking was observed without fruit bagging, micro-cracking occurred in fruits with black and yellow outer paper bagging at rates of 62.2 and 17.3%, respectively. Our results suggest that the light condition was the most important cause of micro-cracking because the occurrence of micro-cracking in 'Mansoo' fruits was affected by factors including sun duration, trellis system and fruit bag color. We suggested that micro-cracking could be reduced in 'Mansoo' fruit by optimizing the light conditions with the proper trellis system, bagging color and summer pruning.