• 제목/요약/키워드: 인공 지능 신경망

검색결과 598건 처리시간 0.027초

전통문화 이미지를 위한 세부 자질 주목형 이미지 자동 분석기 (Detail Focused Image Classifier Model for Traditional Images)

  • 김규경;허윤아;김경민;유원희;임희석
    • 한국융합학회논문지
    • /
    • 제8권12호
    • /
    • pp.85-92
    • /
    • 2017
  • 이 논문에서는 최근 전통문화의 늘어나는 콘텐츠와 대조적으로 전통문화에 대한 접근성이 떨어지는 점에 주목하여 이러한 콘텐츠의 접근성의 향상을 위해 지속된 관리와 연구를 위하여 전통문화 이미지를 위한 이미지 자동 분석기를 소개한다. 이 논문에서 소개하는 이미지 자동 분석기는 인공신경망을 기반으로 입력 이미지의 자질들을 벡터스페이스로 변환하여 이를 RNN 기반의 모델을 통하여 세부 자질들을 파악하여 전통문화 이미지의 분류를 행한다. 이러한 방법을 통하여 전체적으로 비슷하게 보이는 전통문화 이미지들의 분류를 가능케 한다. 해당 모델의 훈련을 위하여 한민족정보문화마당 기반의 형식을 토대로 넓은 폭의 이미지 데이터를 수집 및 정리하여 차후 전통문화 이미지 관련 분야에서 사용할 수 있는 데이터셋의 구축에 기여를 하였다. 또한 이러한 연구가 최종적으로 전통문화와 관련된 수요, 공급 및 연구가 한층 더 활발해지는 것에 기여를 한다.

스마트 시설환경 환경변수 분석을 위한 Open source 기반 인공지능 활용법 분석 (A Benchmark of AI Application based on Open Source for Data Mining Environmental Variables in Smart Farm)

  • 민재기;이동훈
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2017년도 춘계공동학술대회
    • /
    • pp.159-159
    • /
    • 2017
  • 스마트 시설환경은 대표적으로 원예, 축산 분야 등 여러 형태의 농업현장에 정보 통신 및 데이터 분석 기술을 도입하고 있는 시설화된 생산 환경이라 할 수 있다. 근래에 하드웨어적으로 급증한 스마트 시설환경에서 생산되는 방대한 생육/환경 데이터를 올바르고 적합하게 사용하기 위해서는 일반 산업 현장과는 차별화 된 분석기법이 요구된다고 할 수 있다. 소프트웨어 공학 분야에서 연구된 빅데이터 처리 기술을 기계적으로 농업 분야의 빅데이터에 적용하기에는 한계가 있을 수 있다. 시설환경 내/외부의 다양한 환경 변수는 시계열 데이터의 난해성, 비가역성, 불특정성, 비정형 패턴 등에 기인하여 예측 모델 연구가 매우 난해한 대상이기 때문이라 할 수 있다. 본 연구에서는 근래에 관심이 급증하고 있는 인공신경망 연구 소프트웨어인 Tensorflow (www.tensorflow.org)와 대표적인 Open source인 OpenNN (www.openn.net)을 스마트 시설환경 환경변수 상호간 상관성 분석에 응용하였다. 해당 소프트웨어 라이브러리의 운영환경을 살펴보면 Tensorflow 는 Linux(Ubuntu 16.04.4), Max OS X(EL capitan 10.11), Windows (x86 compatible)에서 활용가능하고, OpenNN은 별도의 운영환경에 대한 바이너리를 제공하지 않고 소스코드 전체를 제공하므로, 해당 운영환경에서 바이너리 컴파일 후 활용이 가능하다. 소프트웨어 개발 언어의 경우 Tensorflow는 python이 기본 언어이며 python(v2.7 or v3.N) 가상 환경 내에서 개발이 수행이 된다. 주의 깊게 살펴볼 부분은 이러한 개발 환경의 제약으로 인하여 Tensorflow의 주요한 장점 중에 하나인 고속 연산 기능 수행이 일부 운영 환경에 국한이 되어 제공이 된다는 점이다. GPU(Graphics Processing Unit)의 제공하는 하드웨어 가속기능은 Linux 운영체제에서 활용이 가능하다. 가상 개발 환경에 운영되는 한계로 인하여 실시간 정보 처리에는 한계가 따르므로 이에 대한 고려가 필요하다. 한편 근래(2017.03)에 공개된 Tensorflow API r1.0의 경우 python, C++, Java언어와 함께 Go라는 언어를 새로 지원하여 개발자의 활용 범위를 매우 높였다. OpenNN의 경우 C++ 언어를 기본으로 제공하며 C++ 컴파일러를 지원하는 임의의 개발 환경에서 모두 활용이 가능하다. 특징은 클러스터링 플랫폼과 연동을 통해 하드웨어 가속 기능의 부재를 일부 극복했다는 점이다. 상기 두 가지 패키지를 이용하여 2016년 2월부터 5월 까지 충북 음성군 소재 딸기 온실 내부에서 취득한 온도, 습도, 조도, CO2에 대하여 Large-scale linear model을 실험적(시간단위, 일단위, 주단위 분할)으로 적용하고, 인접한 세그먼트의 환경변수 예측 모델링을 수행하였다. 동일한 조건의 학습을 수행함에 있어, Tensorflow가 개발 소요 시간과 학습 실행 속도 측면에서 매우 우세하였다. OpenNN을 이용하여 대등한 성능을 보이기 위해선 병렬 클러스터링 기술을 활용해야 할 것이다. 오프라인 일괄(Offline batch)처리 방식의 한계가 있는 인공신경망 모델링 기법과 현장 보급이 불가능한 고성능 하드웨어 연산 장치에 대한 대안 마련을 위한 연구가 필요하다.

  • PDF

임의 위치 구조물의 손상예측을 위한 인공지능 기반 지진가속도 추정방법 (Method of Earthquake Acceleration Estimation for Predicting Damage to Arbitrary Location Structures based on Artificial Intelligence )

  • 이경석;서영득;백은림
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제27권3호
    • /
    • pp.71-79
    • /
    • 2023
  • 지진이 발생한 후 구조물의 안전성을 평가하기 위해 모든 교량 및 건축물에 지진가속도 및 변위를 계측하는 유지관리시스템을 구축하기는 효율적이지 않아, 이를 유지관리하기 위해서는 현장조사가 시행되며 조사범위가 넓은 경우 많은 시간이 소요된다. 그로 인해 2차 피해가 발생할 우려가 있으므로 신속한 개별 구조물의 안전성을 추정할 필요가 있다. 구조물의 지진 손상은 구조물에 인가된 지진력 정보와 구조해석모델을 이용하여 위험도평가 해석을 통해 예측할 수 있다. 이를 위해 지진 발생 시 임의위치에서 발생한 지진력을 추정할 필요가 있다. 본 연구에서는 국내 지진계측 기록과 선형추정방법 및 인공신경망 학습 방법을 활용한 임의위치의 지반 응답스펙트럼 및 가속도시간이력을 추정하는 방법들을 제안하고 적용성을 평가하였다. 선형추정방법의 경우 추정에 사용되는 인근 관측소의 위치가 가까울 경우 오차가 적었지만 멀어질 경우 오차가 크게 증가하였다. 인공신경망 학습 방법의 경우 동일한 조건에서 더 낮은 수준의 오차로 추정할 수 있었다.

부도예측모형에서 도메인 지식을 통합한 반사실적 예시 기반 설명력 증진 방법 (Domain Knowledge Incorporated Counterfactual Example-Based Explanation for Bankruptcy Prediction Model)

  • 조수현;신경식
    • 지능정보연구
    • /
    • 제28권2호
    • /
    • pp.307-332
    • /
    • 2022
  • 부도예측모형은 여러 금융기관의 신용평가모형의 지식기반(knowledge base)로 이용되고 있으며 최근 머신러닝 기법의 발전으로 이를 도입하여 고도화하려는 다양한 시도가 진행 중이다. 그러나 실제 이러한 모형이 도입되기 위해서는 모형을 이용하는 사용자와 설명제공 대상인 고객의 이해와 수용이 전제되어야 한다. 그러나 사용자에게 제공되는 설명이 현실적 타당성(feasibility)이 결여되어 있다면 모형의 신뢰성과 수용도에 부정적인 영향을 미친다. 이에 따라 본 연구는 도메인 지식을 설명 생성 알고리즘에 통합하여 현실적으로 타당한 설명을 사용자에게 제공하고자 한다. 본 연구에서는 머신러닝 기반의 부도예측 모형에 설명력을 더하는 방법으로 반사실적 예시(counterfactual example) 기반의 로컬영역에서의 설명을 제공하는 모델을 제안한다. 제안 모델은 모형에 이용된 재무변수의 특성을 설명력 생성 알고리즘에 통합하여 설명의 현실적 가능성을 확보하고 이를 통해 사용자의 이해와 수용을 도모하고자 한다. 또한 본 연구에서는 반사실적 예시기반 설명을 위해 유전알고리즘(GA)를 이용하며 다목적함수를 목적함수로 설정하여 반사실적 예시의 주요 기준이 되는 항목을 반영하고 있다. 본 연구는 대표적인 머신러닝 기법인 인공신경망을 이용해 부도예측모형을 학습시킨 뒤, 사후적 방법(post-hoc)으로 설명을 위한 알고리즘을 도입하여 기존의 모형 설명 알고리즘인 LIME과 현실적 가능성이 결여된 반사실적 예시 기반 알고리즘과 비교하였다. 더 나아가 제안방법의 금융/회계 분야의 종사자를 대상으로 서베이를 진행하여 제안 방법의 설명의 질을 정성적으로 평가하였다.

적대적 생성 신경망을 활용한 비지도 학습 기반의 대기 자료 이상 탐지 알고리즘 연구 (A Study on Atmospheric Data Anomaly Detection Algorithm based on Unsupervised Learning Using Adversarial Generative Neural Network)

  • 양호준;이선우;이문형;김종구;최정무;신유미;이석채;권장우;박지훈;정동희;신혜정
    • 융합정보논문지
    • /
    • 제12권4호
    • /
    • pp.260-269
    • /
    • 2022
  • 본 논문에서는 기존에 전문가에 의해서 이루어지던 국가 대기오염 측정망 데이터들의 이상 탐지 작업을 인공지능을 통해 자동화하고자 심층 신경망을 이용한 이상 탐지 모델을 제안하였다. 환경과학원에서 제공받은 기상자료 데이터의 결측치 및 이상치를 분석하여 학습데이터를 생성하였으며 비지도 학습 방식의 BeatGAN 모델에 기반하여 커널 구조 변경과 합성곱 필터층 및 전치 합성곱 필터층의 추가를 통해 새로운 모델을 제안하여 이상 탐지 성능을 높이고자 하였다. 또한 제안하는 모델의 생성적 특징을 활용하여 새로운 데이터를 생성하고 이를 학습에 사용하는 재학습 알고리즘을 구현 및 적용하여 기존 BeatGAN 모델뿐 아니라 다른 비지도 학습 모델인 Iforest, One Class SVM과 비교하였을 때 제안모델의 성능이 가장 높았음을 확인할 수 있었다. 본 연구를 통해 실제 산업현장에서 센서의 이상, 점검 등의 여러 요인으로 인해 학습 데이터가 부족한 상황에서 추가적인 비용없이 과적합을 피하며 제안하는 모델의 이상탐지 성능을 올릴 수 있는 방법을 제시할 수 있었다.

효율적인 균열 데이터 수집을 위한 벡터 기반 데이터 증강과 네트워크 학습 (Vector-Based Data Augmentation and Network Learning for Efficient Crack Data Collection)

  • 김종현
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제28권2호
    • /
    • pp.1-9
    • /
    • 2022
  • 본 논문에서는 균열을 감지 할 때 필요한 데이터를 생성할 수 있는 벡터 기반 증강 기법과 이를 학습할 수 있는 합성곱 인공신경망(Convolution Neural Networks, ConvNet) 기법을 제안한다. 균열을 빠르고 정확하게 감지하는 것은 건물 붕괴와 낙하 사고를 사전에 방지할 수 있는 중요한 기술이다. 이 문제를 인공지능으로 해결하기 위해서는 대량의 데이터 확보가 필수적이지만, 실제 균열 이미지를 얻기 위한 상황은 대부분 위험하기 때문에 대량의 균열 데이터를 확보하기는 어렵다. 이런 데이터베이스 구축의 문제점은 인위적인 특정 부분에 변형을 주어 데이터의 양을 늘리는 탄성왜곡(Elastic distortion)으로 완화시킬 수 있지만, 본 논문에서는 이보다 향상된 균열 패턴 결과를 ConvNet을 활용하여 모델링한다. 탄성왜곡보다 우리의 방법이 실제 균열 패턴과 유사하게 추출된 결과를 얻을 수 있었고, 일반적인 데이터 증강에서 사용되는 픽셀 단위가 아닌, 벡터 기반으로 균열 데이터 증강을 설계함으로써 균열의 변화량 측면에서 우수한 결과를 얻을 수 있다. 결과적으로 본 논문에서는 적은 개수의 균열 데이터를 입력으로 사용했음에도 불구하고 균열의 방향 및 패턴을 다양하게 생성하여 효율적으로 균열 데이터베이스를 구축할 수 있다.

데이터 마이닝을 이용한 지능형 전공지도시스템 연구 (A Date Mining Approach to Intelligent College Road Map Advice Service)

  • 최덕원;조경필;신진규
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2005년도 춘계학술대회
    • /
    • pp.266-273
    • /
    • 2005
  • 대학의 학사관리 시스템은 학생이 입학하여 졸업하기까지 수행하는 여러 가지 학사활동 및 과외활동으로부터 발생하는 방대한 데이터를 보유하고 있다. 그러나 이들을 학생들의 전공지도나 진로지도에 효과적으로 활용하지 못하고 있다. 본 논문에서는 학사관리 시스템에 축적된 정보를 대상으로 데이터 마이닝 기법을 적용하여 학생들의 전공선택 및 진로지도에 도움을 줄 수 있는 새로운 정보와 지식을 생성하는 방법을 개발, 제시하였다. 이 연구를 위하여 요인분석, 계층분석 (AHP), 인공신경망, CART 기법 등을 동원하여 데이터 마이닝을 수행함으로써 유용한 지식과 규칙을 생성하였다. 방법론의 개발에 사용된 기본 자료들은 학생들의 Holland 적성검사, TOEIC 점수, 이수과목, 평점 등이다. 연구의 결과로서 기존의 학생지도 담당자가 수작업으로는 알아낼 수 없었던 학생지도에 관한 유용한 규칙을 도출할 수 있었다.

  • PDF

감정예측모형의 성과개선을 위한 Support Vector Regression 응용 (Application of Support Vector Regression for Improving the Performance of the Emotion Prediction Model)

  • 김성진;유은정;정민규;김재경;안현철
    • 지능정보연구
    • /
    • 제18권3호
    • /
    • pp.185-202
    • /
    • 2012
  • 오늘날 정보사회에서는 정보에 대한 가치를 인식하고, 이를 위한 정보의 활용과 수집이 중요해지고 있다. 얼굴 표정은 그림 하나가 수천개의 단어를 표현할 수 있듯이 수천 개의 정보를 지니고 있다. 이에 주목하여 최근 얼굴 표정을 통해 사람의 감정을 판단하여 지능형 서비스를 제공하기 위한 시도가 MIT Media Lab을 필두로 활발하게 이루어지고 있다. 전통적으로 기존 연구에서는 인공신경망, 중회귀분석 등의 기법을 통해 사람의 감정을 판단하는 연구가 이루어져 왔다. 하지만 중회귀모형은 예측 정확도가 떨어지고, 인공신경망은 성능은 뛰어나지만 기법 자체가 지닌 과적합화 문제로 인해 한계를 지닌다. 본 연구는 사람들의 자극에 대한 반응으로서 나타나는 얼굴 표정을 통해 감정을 추론해내는 지능형 모형을 개발하는 것을 목표로 한다. 기존 얼굴 표정을 통한 지능형 감정판단모형을 개선하기 위하여, Support Vector Regression(이하 SVR) 기법을 적용하는 새로운 모형을 제시한다. SVR은 기존 Support Vector Machine이 가진 뛰어난 예측 능력을 바탕으로, 회귀문제 영역을 해결하기 위해 확장된 것이다. 본 연구의 제안 모형의 목적은 사람의 얼굴 표정으로부터 쾌/불쾌 수준 그리고 몰입도를 판단할 수 있도록 설계되는 것이다. 모형 구축을 위해 사람들에게 적절한 자극영상을 제공했을 때 나타나는 얼굴 반응들을 수집했고, 이를 기반으로 얼굴 특징점을 도출 및 보정하였다. 이후 전처리 과정을 통해 통계적 유의변수를 추출 후 학습용과 검증용 데이터로 구분하여 SVR 모형을 통해 학습시키고, 평가되도록 하였다. 다수의 일반인들을 대상으로 수집된 실제 데이터셋을 기반으로 제안모형을 적용해 본 결과, 매우 우수한 예측 정확도를 보임을 확인할 수 있었다. 아울러, 중회귀분석이나 인공신경망 기법과 비교했을 때에도 본 연구에서 제안한 SVR 모형이 쾌/불쾌 수준 및 몰입도 모두에서 더 우수한 예측성과를 보임을 확인할 수 있었다. 이는 얼굴 표정에 기반한 감정판단모형으로서 SVR이 상당히 효과적인 수단이 될 수 있다는 점을 알 수 있었다.

정수장에서의 에너지 관리를 위한 AI 기반 복합센서 적용 연구 (AI based complex sensor application study for energy management in WTP)

  • 홍성택;안상병;김국;성민석
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.322-323
    • /
    • 2022
  • 정수장의 최적화 운영을 위하여 가장 필요한 것은 수용가에서 사용되는 수돗물의 패턴과 양을 정확하게 예측하여 필요한 만큼의 수돗물을 펌프를 이용하여 배수지로 전달하여 저장하고, 필요한 유량이 최소의 전기에너지를 이용하여 적기에 공급되어야 한다. 정수장의 수량 예측 중 에너지 최적화 운영의 관점에서 필요한 단기 수요예측은 시계열 분석, 회귀분석 및 신경망 알고리즘을 이용하여 계절별, 주요 기간별, 지역 특성별 등을 고려하여 이루어져 왔으며, 본 논문에서는 순환적 신경회로망의 일종인 LSTM(Long Short-Term Memory), GRU(Gated Recurrent Units) 등의 AI 기반 복합센서 적용성 분석을 통한 에너지 관리 방안에 대하여 분석하였다.

  • PDF

인공지능을 이용한 신규간호사 이직률 예측 (Artificial Intelligence to forecast new nurse turnover rates in hospital)

  • 최주희;박혜경;박지은;이창민;최병관
    • 한국융합학회논문지
    • /
    • 제9권9호
    • /
    • pp.431-440
    • /
    • 2018
  • 본 연구에서는 인공지능 기술 중 구글에서 개발하여 오픈소스로 제공하고 있는 텐서플로우(Tensorflow) 활용하여 신규간호사 이직률을 예측해 보았고, 이를 통해 전략적 인적자원관리 방안을 제시하였다. 부산지역 한 대학병원의 2010년에서 2017년 사이 퇴직한 간호사 데이터 1,018건을 수집하였다. 학습에 사용된 자료는 순서를 임의로 재배열 한 뒤 전체 데이터의 80%를 학습에, 나머지 20%를 테스트에 이용하였다. 활용된 알고리즘은 다중신경망회로(multiple neural network)로서 입력층과 출력층, 3개 층의 은닉층을 가지도록 설계 되었다. 본 연구의 결과 텐서플로우 플랫폼을 활용하여 1년 이내 이직률을 88.7%, 3년 이내 조기 이직률은 79.8%의 정확도로 예측하였고, 대상자들의 퇴직 시 연령은 20대 후반부터 30대에 집중되어 있었다. 가장 높은 빈도를 차지한 이직 사유로는 '결혼, 출산, 육아, 가정 및 개인사정'이었으나, 근무기간 1년 이하 대상자 들의 가장 높은 이직사유는 '업무 부적응 및 대인관계 문제'로 나타났다.