최근 풍력발전 시스템은 가장 빨리 발전하고 있는 신재생 에너지원중 하나로 각광을 받고 있으며, 풍력발전 시스템의 주된 관심사는 어떻게 광범위한 풍속의 변화에서도 효율적으로 시스템을 동작시키는 가에 있다. 일반적으로 풍속은 풍력발전시스템의 동특성에 큰 영향을 미치는 요소이다. 따라서 많은 풍력발전 제어 알고리듬은 성능향상을 위해 풍속의 측정을 요구하게 된다. 그러나 불행히도 풍속계와 같은 센서에 의한 실효 풍속의 정확한 측정은 어려운 실정이며 따라서 제어 시스템의 동작을 위해 풍속은 여러 가지 기법을 통해 추정되고 있는 실정이다. 이에 본 연구에서는 칼만 필터 및 신경망에 기반한 새로운 형태의 풍속 추정 기법을 제안하고 제안된 기법의 유용성 확인을 위해 다양한 형태의 시뮬레이션을 수행하고자 한다.
운동하는 물체를 제어하기 위한 제어이론은 디지털 컴퓨터(임베디드시스템)를 이용하여 복잡한 신경망 이론, 인공지능 이론, 비선형 모델 예측 제어 이론등이 제어기 설계 단계에서 구현되고 있다. 비행제어 시스템의 비선형 모델 예측 제어 예측기는 구현하는 컴퓨터의 성능과 각종 모듈의 응용프로그램을 하드실시간(Hard Real-Time)으로 처리할 수 있도록 응답 시간을 충족 하여야 한다. 이와 동시에 제어 시스템에의 성능을 충분히 발휘할 수 있는 정확성도 고려하여야 한다. 수학적 영역에서의 오류는 전체 알고리즘 구현에 영향을 준다. 그러나 이러한 수학적 오류 발생 요인은 예측기에서 생성되는 파라미터에서 최종 정확도 계산에 가끔 고려하지 않는다. 본 논문에서는 비행체 제어를 위한 디지털 제어 시스템에서 하드실시간 하중제어 모델 예측기를 구현하고, 알고리즘의 응답시간을 살펴본다. 또한 이에 따른 정밀도를 보장하는 고효율 예측기를 구현하는 알고리즘을 살펴본다. 예측기는 하중 제어 모델에서 오일러 방법, Heun 방법, Runge-kutta 방법, 테일러 방법의 수치적분 알고리즘을 사용하여 구현된다.
The power generated by wind turbines changes rapidly because of the continuous fluctuation of wind speed and direction. It is important for the power industry to have the capability to predict the changing wind power. In this paper, neural network based wind power prediction scheme which uses wind speed and direction is considered. In order to get a better prediction result, compression function which can be applied to the measurement data is introduced. Empirical data obtained from wind farm located in Kunsan is considered to verify the performance of the compression function.
The objective of this paper is, based upon the principles of artificial life, to induce emergent behaviors of multiple autonomous mobile robots which complex global intelligence form from simple local interactions. Here, we propose an architecture of neural network learning with reinforcement signals which perceives the neighborhood information and decides the direction and the velocity of movement as mobile robots navigate in a group. As the results of the simulations, the optimum weight is obtained in real time, which not only prevent the collisions between agents and obstacles in the dynamic environment, but also have the mobile robots move and keep in various patterns.
An artificial neural network(NN) technique is developed for hardware redundant sensor validation. Since the measurement space is a continuous space with many operating regions, it is difficult to train a NN to correctly detect failure in an accurate measurement system. A conventional backpropagation NN is modified to include an additional preprocessing layer that extracts classification features from scalar measurements. This feature extraction means transform the measurement space to parity space. The NN is independent of the state variable being measured, the instrument range, and the signal tolerance. This NN resembles the parity space approach to signal validation, except that analytical parity equations are unneeded and the NN pattern recognition capability is utilized for decision making.
DDPG(Deep Deterministic Policy Gradient)알고리즘은 인공신경망과 강화학습을 사용하여 학습하는 알고리즘이다. 최근 많은 연구가 이루어지고 있는 강화학습과 관련된 연구 중에서도 DDPG 알고리즘은 오프폴리시로 학습하기 때문에 잘못된 행동이 누적되어 학습에 영향을 미치는 경우를 방지하는 장점이 있다. 본 연구에서는 DDPG 알고리즘을 응용하여 자전거를 자율주행 하도록 제어하는 실험을 진행하였다. 다양한 환경을 설정하여 시뮬레이션을 진행하였고 실험을 통해서 사용된 방법이 시뮬레이션 상에서 안정적으로 동작함을 보였다.
본 연구에서는 고속의 연산이 가능한 인공신경망 시뮬레이터와 SA 알고리즘을 결합하여 지능형 생산정 위치 최적화 전산 모델을 개발하였다. 기존의 사용하는 상용시뮬레이터의 경우 현장 규모의 저류 전산 시뮬레이션을 수행시 시간이 많이 소모되므로 이를 해결하기 위하여 이 모델에서는 인공신경망을 사용하여 짧은 시간내에 시뮬레이션을 수행할 수 있도록 하였다. 이렇게 얻은 결과를 주관적인 경험에 의거하지 않고 자동으로 최적의 생산정 위치를 선정할 수 있도록 최적화기법인 SA 알고리즘을 적용하였다. 개발된 모델을 사용하여 얻은 결과를 기존 사용 시뮬레이터와 비교하여 예측성능이 양호함을 검증할 수 있었으며, 연산속도 또한 향상됨을 확인하였다. 특히 SA 최적화 알고리즘의 제어변수인 초기온도와 냉각률에 대한 민감도분석을 실시하여 각각에 대한 최적값을 산출하였으며, 이를 통해 개발한 모델의 연산성능을 향상시킬 수 있었다. 마지막으로 개발된 모델을 사용하여 생산정 위치 최적화를 수행한 결과, 생산성이 우수한 지역을 선정하여 최적의 생산정 위치를 도출하였다.
퍼지신경망 모형은 인공신경망의 네트워크 구조 표현방법 및 학습알고리듬과 퍼지시스템의 추론방법을 통합한 모형으로 제어 및 예측분야에 성공적으로 적용되고 있다. 본 연구에서는 퍼지신경망 모형 중 우수한 예측정확도로 인해 최근 각광받고 있는 ANFIS (Adaptive Network-based Fuzzy Inference System) 모형에서 생성된 퍼지규칙의 해석용이성을 평가하였다. ANFIS모형은 인간 전문가와 상호작용하면서 규칙을 정제해 나갈 수 있다. 특히 인간전문가의 사전지식을 이용하여 초기 퍼지규칙을 만들고 난 후 모형을 학습하면 최적에 수렴하는 시간을 단축할 뿐 아니라, 전역 최적치 도달가능성이 높아진다고 보고되고 있다. 이러한 관점에서 볼 때 규칙의 해석용이성은 인간 전문가와의 상호작용을 위해 매우 중요한 이슈가 될 수 있다. 본 연구에서는 ANFIS모형과 의사결정나무 모형에서 생성된 규칙을 해석용이성 관점에서 비교하기 위한 측도를 제안하고 각 규칙들을 비교하였다. 본 연구에서 제안된 해석용이성 측도들은 규칙을 생성하는 다양한 기계학습 모형의 규칙생성 능력을 평가하는 기준으로도 활용될 수 있을 것이다.
뉴로모픽 컴퓨팅은 일반적으로 CPU와 GPU를 이용하여 신경망 연산을 하는 것보다 전력, 면적, 속도 측면에서 매우 뛰어난 성능을 보여준다. 이러한 특성은 에너지 사용량이 중요시되는 자원 제약적인 IoT 환경에 매우 적합하다. 하지만 뉴로모픽 컴퓨팅을 지원하는 이기종 IoT 기기에 따라 환경설정 및 응용 프로그램 동작을 위한 소스코드의 수정이 필요하다는 문제점을 가지고 있다. 이러한 문제점을 해결하고자 본 논문에서는 NAAL을 제안하고 구현하였다. NAAL은 공통의 API를 기반으로 다양한 이기종 IoT 기기 환경에서 IoT 기기의 제어와 뉴로모픽 아키텍처의 추상화 및 추론 모델 동작에 필요한 기능을 제공한다. NAAL은 향후 새로운 이기종 IoT 기기 및 뉴로모픽 아키텍처와 컴퓨팅 장치의 추가적인 지원이 가능하다는 장점을 가진다.
Purpose: This study aimed at developing an artificial neural network (ANN) model to predict the optimal start moment of the setback temperature during the normal occupied period of a building. Method: For achieving this objective, three major steps were conducted: the development of an initial ANN model, optimization of the initial model, and performance tests of the optimized model. The development and performance testing of the ANN model were conducted through numerical simulation methods using transient systems simulation (TRNSYS) and matrix laboratory (MATLAB) software. Result: The results analysis in the development and test processes revealed that the indoor temperature, outdoor temperature, and temperature difference from the setback temperature presented strong relationship with the optimal start moment of the setback temperature; thus, these variables were used as input neurons in the ANN model. The optimal values for the number of hidden layers, number of hidden neurons, learning rate, and moment were found to be 4, 9, 0.6, and 0.9, respectively, and these values were applied to the optimized ANN model. The optimized model proved its prediction accuracy with the very storing statistical correlation between the predicted values from the ANN model and the simulated values in the TRNSYS model. Thus, the optimized model showed its potential to be applied in the control algorithm.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.