본 논문에서는 화학공정 제어분야에서 수행된 인공신경망을 이용한 연구에 대하여 정리하였다. 본 논문의 구성은 먼저 인공신경망의 일반적인 특성에 대하여 개괄적으로 알아보았고, 인공신경망을 모델링과 제어에 사용한 연구들을 체계적으로 정리하였다. 또한 마지마긍로 화학공정에 적용된 사례를 소개하고, 화학공정에 인공신경망을 사용하는 경우에 댜하여 문제점과 특성을 논의하였다.
An intelligent control technique using a neural network is proposed for offshore structures exposed to sea-bed earthquakes. Fluid-structure interaction effect was considered in developing controller and a training algorithm for the neural network is presented. In the numerical example, the performance of the proposed neural network controller was compared with that of a passive controller and uncontrolled structures. Based on the example, it can be concluded that the proposed neuro-control scheme can be used for offshore structures with nonlinear characteristics due to its interaction with fluid.
In this paper, we present a neural network identification and a control of highly complicated nonlinear left ventricular assist device(LVAD) system with a pneumatically driven mock circulation system. Generally, the LVAD system needs to compensate for nonlinearities. It is necessary to apply high performance control techniques. Fortunately, the neural network can be applied to control of a nonlinear dynamic system by learning capability. In this study, we identify the LVAD system with neural network identification(NNI). Once the NNI has learned the dynamic model of the LVAD system, the other network, called neural network controller(NNC), is designed for a control of the LVAD system. The ability and effectiveness of identifying and controlling the LVAD system using the proposed algorithm will be demonstrated by computer simulation.
Kim, Doo-Kie;Lee, Jong-Jae;Chang, Seong-Kyu;Choi, In-Jung
Journal of the Korea institute for structural maintenance and inspection
/
v.11
no.1
/
pp.103-112
/
2007
Recently structures become longer and higher because of the developments of new materials and construction techniques. However, such modern structures are susceptible to excessive structural vibrations, which may induce problems of serviceability and structural damages. In this paper we attempt to control structural vibration using the probabilistic neural network(PNN) and the artificial neural network(ANN) based on the training pattern that consist of only the structural state vector and the control force. The state vectors of the structure and control forces made by linear quadratic regulator(LQR) algorithm are used for training pattern of PNN and ANN. The proposed algorithm is applied for the vibration control of the three story shear building under Northridge earthquake. Control results by the proposed PNN and ANN are compared with each other.
The Transactions of the Korean Institute of Power Electronics
/
v.4
no.2
/
pp.166-174
/
1999
On-line efficiency optimization control of an induction motor drive using neural network is important from the v viewpoints of energy saving and controlling a nonlinear system whose charact81istics are not fully known. This paper p presents a neural networklongleftarrowbased on-line efficiency optimization control for an induction motor drive, which adopts an optimal slip an밍J.lar frequency control. In the proposed scheme, a neuro-controller provides minimal loss operating point i in the whole range of the measured input power. Both simulation and experimental results show that a considerable e energy saving is achieved compared with the conventional constant vlf ratio operation.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2002.12a
/
pp.410-413
/
2002
일반적으로 휴대폰에는 리튬이온(Ll-lon) 전지(battery)를 많이 사용하고 있으며 그 전지(battery)를 충전시키기 위해 Microcontroller를 사용해서 과충전과 방전, 그리고 전지(battery) 보호와 충전에 대한 일정한 전류를 제어한다. 여기에서 충전 동작 시 필요한 일반직인 충전 전류 제어를 PWM의 방식에 의존하지 않고 인공지능 기법을 이용해 소프트웨어적으로 처리가 필요한 파라메터 값을 추정해 적용시키고자 한다. 따라서 개발한 충전시스템에 일반적인 충전 파라메터를 전압과 전류 그리고 시간으로 분류하여 Microcontroller에 그 파라메터를 적용시켜 PWM 방식으로 제어한 후에 실험에 의한 결과값을 얻는다. 그리고 이것들을 비교하여 보다 나은 충전시스템을 구현하기 위해 인공지능 기법 중에 하나인 신경망을 이용하여 전압과 전류 그리고 시간에 대한 파라메터를 처리하였다. 본 논문에서 신경망에 대한 파라메터의 학습을 일반 FC에서 구현하고 여기에서 추출된 학습 값을 Microcontroller에 적용시켜 입력값에 따라 다양한 PWM 신호를 발생시키도록 구현했다. 이후 실제적인 실험에 의한 결과값을 본 논문에서 서술하였다.
Journal of the Korean Institute of Intelligent Systems
/
v.7
no.5
/
pp.51-59
/
1997
In this paper, we perform the position control of a DC servo motor using fuzzy neural controller. We
use the Fuzzy controller for the position control, because the Fuzzy controller is designed simpler than
other intelligent controller, but it is difficult to design for the triangle membership function format.
Therefore we solve the problem using the BP learning method of neural network. The proposed Fuzzy
neural network controller has been applied to the position control of various virtual plants. And the
DC servo motor position control using the fuzzy neural network controller is performed as a real
time experiment.
Proceedings of the Korean Nuclear Society Conference
/
1996.11a
/
pp.177-182
/
1996
Remote nuclear cask handling device (RNCHD)는 사용후 핵연료cask의 원격 조작에 있어서 안전성과 성능을 향상을 목적으로 한다. RNCHD의 한부분인 grapple은 사용후 핵연료cask의 이동 및 수송 또는 용기뚜껑의 개폐를 위하여 cask의 벽에 대각선으로 돌출되어있는 두 개의 trunnion에 삽입되어야한다. 그러나 trunnion으로의 grapple 삽입은 용기중심과 grapple 장치 중심사이의 위치와 방향편차 때문에 어렵게된다. 인공신경망은 grapple에 설치된 광전센서를 사용하여 용기의 중심으로 부터 grapple 장치의 상대적 위치를 계측하기위해 사용된다. 인공신경망 학습은 광전센서값과 grapple의 상대적 위치와 방향사이의 함수적 관계를 추론하기 위해 수행된다. 이렇게 측정된 RNCHD의 중심위치는 grapple의 자세를 맞추기 위한 제어입력값으로 제공된다. 인공신경망 학습을 위한 데이터는 grapple 장치와 trunnion을 모사한 1/2 스케일의 실험장치를 사용함으로써 얻어진다. 학습된 인공신경망은 학습에 사용 안된 센서입력값, 즉 새로운 grapple의 위치에 대해서도 정확성을 가지고 grapple 장치의 위치와 방위를 측정할 수 있었다.
본 논문에서는 3축이 연성되어 비선형 운동 방정식으로 표현되는 3축 안정화 인공위성 시스뎀에 입릭외란과 시스템의 불확실성이 존재할 경우에도 자제 정밀도를 유지하는 제어기를 설계한다. 비선헝 운동 방정식으로 표현되는 운동 방정식을 선형화하고 PID제어기를 구성하였다 선형화에 의한 시스템의 불확실성과 입력 외란을 신경회로망으로 추정하여 외란의 엉향을 제거하도록 구성된 PR제어기의 제어입력을 수정한다 수정된 제어입력은 외란을 상쇠시켜 시스템 출력에서 외란의 효과를 제거하게 된다. 신경회로망은 제어입력과 시스템 출력, 기준 운동 방정식간의 관계를 이용하여 외간과 시스템의 불확실성을 추정하며, 역전파 알고리즘을 사용한 학습 알고리즘으로 신경 회로망을 교육한다. 제안된 신경회로망을 이용한 외란 제거 제어기는 시뮬레이션을 통하여 자세 정밀도의 향상을 검증한다
Journal of the Korean Society for Aeronautical & Space Sciences
/
v.49
no.9
/
pp.729-738
/
2021
Feedback flow control using an artificial neural network was numerically investigated for NACA0015 Airfoil to suppress flow separation on an airfoil. In order to achieve goal of flow control which is aimed to reduce the size of separation on the airfoil, Blowing&Suction actuator was implemented near the separation point. In the system modeling step, the proper orthogonal decomposition was applied to the pressure field. Then, some POD modes that are necessary for flow control are extracted to analyze the unsteady characteristics. NARX neural network based on decomposed modes are trained to represent the flow dynamics and finally operated in the feedback control loop. Predicted control signal was numerically applied on CFD simulation so that control effect was analyzed through comparing the characteristic of aerodynamic force and spatial modes depending on the presence of the control. The feedback control showed effectiveness in pressure drag reduction up to 29%. Numerical results confirm that the effect is due to dramatic pressure recovery around the trailing edge of the airfoil.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.