• Title/Summary/Keyword: 인공지진동

Search Result 46, Processing Time 0.022 seconds

Nonlinear Seismic Estimates of Recorded and Simulated Ground Motions Normalized by the Seismic Design Spectrum (설계용 탄성응답스펙트럼으로 규준화된 인공지진동과 기록지진동의 비선형 지진응답)

  • Jun, Dae-Han;Kang, Pyeong-Doo;Kim, Jae-Ung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.5
    • /
    • pp.25-33
    • /
    • 2011
  • In the nonlinear response history analysis of building structures, the input ground accelerations have considerable effect on the nonlinear response characteristics of structural systems. As the properties of the ground motion, using time history analysis, are interrelated with many factors such as the fault mechanism, the seismic wave propagation from source to site, and the amplification characteristics of the soil, it is difficult to properly select the input ground motions for seismic response analysis. In this paper, the most unfavourable real seismic design ground motions were selected as input motions. The artificial earthquake waves were generated according to these earthquake events. The artificial waves have identical phase angles to the recorded earthquake waves, and their overall response spectra are compatible with the seismic design spectrum with 5% of critical viscous damping. It is concluded that the artificial earthquake waves simulated in this paper are applicable as input ground motions for a seismic response analysis of building structures.

Nonlinear Response Spectra of Artificial Earthquake Waves Compatible with Design Spectrum (설계용 스펙트럼에 적합한 인공지진파에 의한 비선형 응답 특성의 분석)

  • Jun, Dae-Han;Kang, Pyeong-Doo;Kim, Jae-Ung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.5 s.51
    • /
    • pp.63-71
    • /
    • 2006
  • In seismic response analysis of building structures, the input ground accelerations have considerable effect on the nonlinear response characteristics of structures. The characteristics of soil and the locality of the site where those ground motions were recorded affect on the contents of earthquake waves. Therefore, it is difficult to select appropriate input ground motions for seismic response analysis. This study describes a generation of artificial earthquake wave compatible with seismic design spectrum, and also evaluates the nonlinear response spectra by the simulated earthquake motions. The artificial earthquake wave are generated according to the previously recorded earthquake waves in past earthquake events. The artificial wave have identical phase angles to the recorded earthquake wave, and their overall response spectra are compatible with seismic design spectrum with 5% critical viscous damping. Each simulated earthquake wave has a identical phase angles to the original recorded ground acceleration, and match to design spectra in the range of period from 0.02 to 10.0 seconds. The seismic response analysis is performed to examine the nonlinear response characteristics of SDOF system subjected to the simulated earthquake waves. It was concluded that the artificial earthquake waves simulated in this paper are applicable as input ground motions for a seismic response analysis of building structures.

Seismic Response of R/C Structures Subjected to Artificial Ground Motions Compatible with Design Spectrum (설계용 스펙트럼에 적합한 인공지진동을 입력한 철근콘크리트 구조물의 지진응답 특성의 고찰)

  • Jun, Dae-Han;Kang, Ho-Geun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2008
  • In seismic response analysis of building structures, the input ground accelerations have considerable effect on the nonlinear response characteristics of structures. The characteristics of soil and the locality of the site where those ground motions were recorded affect on the contents of earthquake waves. Therefore, it is difficult to select appropriate input ground motions for seismic response analysis. This study describes a generation of artificial earthquake wave compatible with seismic design spectrum, and also evaluates the seismic response values of multistory reinforced concrete structures by the simulated earthquake motions. The artificial earthquake wave are generated according to the previously recorded earthquake waves in past major earthquake events. The artificial wave have identical phase angles to the recorded earthquake wave, and their overall response spectra are compatible with seismic design spectrum with 5% critical viscous damping. The input ground motions applied to this study have identical elastic acceleration response spectra, but have different phase angles. The purpose of this study is to investigate their validity as input ground motion for nonlinear seismic response analysis. As expected, the response quantifies by simulated earthquake waves present better stable than those by real recording of ground motion. It was concluded that the artificial earthquake waves generated in this paper are applicable as input ground motions for a seismic response analysis of building structures. It was also found that strength of input ground motions for seismic analysis are suitable to be normalize as elastic acceleration spectra.

Simulation of Vocal Fold Vibation with Artificial Larynx (인공성대를 이용한 성대 진동의 모의 실험)

  • 황병길
    • Proceedings of the KSLP Conference
    • /
    • 1994.06b
    • /
    • pp.82-82
    • /
    • 1994
  • 다양한 성대의 진동 형태와 조절 작용을 연구하기 위해서 실시간에서 움직이는 인공성대를 만들어 모델의 타당성을 검토하고 이를 이용하여 생리적 음성과 병적인 음성의 기전을 밝히는 것이 본 연구의 목적이다. 지금까지 연구되어온 정적 모델이나 후두절개 표본의 단점과 한계를 극복할 수 있는 모델을 제작하기 위해 고려해야 할 점은 모델을 이용한 성대 진동 파형의 수평적 수직적 요소의 관찰이 용이해야 하고 성대진동의 기본 요소들 즉 성대의 긴장도, 성문간격, 성문하압 등의 변화에 따른 음성 발현 양상의 차이를 쉽게 보여줄 수 있는 지에 관한 것이다. (중략)

  • PDF

Design and Implementation of a Vibration Transducer based on PZT Multi-layered Actuator for Implantable Middle Ear Hearing Devices (PZT 적층 압전체 기반의 인공중이용 트랜스듀서 설계 및 구현)

  • Park, I.Y.;Jung, E.S.;Seong, K.W.;Kim, M.W.;Cho, J.H.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.1 no.1
    • /
    • pp.29-36
    • /
    • 2007
  • Recently, implantable middle ear hearing devices (IMEHDs) have been developed to overcome the problems of conventional hearing aids. In this paper, a piezoelectric floating mass transducer (PFMT) based on a PZT multi-layered actuator has been designed and implemented using the approximated mechanical vibration modeling for the PFMT and the analysis of vibration characteristics through the transformation into the equivalent electrical model. The implemented PFMT has been attached to the ossicle of a human cadaver's temporal bone and the in-vitro experiment has been performed. Through the experimental results, it has been verified that the PFMT applied into our developed implantable middle ear hearing device can be used for an IMEHD transducer.

  • PDF

Lumped Model Parameter Estimation of Floating Mass Transducers based on Sequential Quadratic Programming Method for IMEHDs (Sequential Quadratic Programming 방법을 이용한 인공중이용 플로팅 매스 트랜스듀서의 집중 모델 파라미터 추정)

  • Park, I.Y.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.5 no.1
    • /
    • pp.59-64
    • /
    • 2011
  • In this paper, the lumped element model parameter estimation method and its implemented estimation software for fabricated floating mass transducers of IMEHDs have been presented so that the estimated parameter values could be compared with the designed ones and applied to predict the output performance when the transducers were implanted into human ears. The presented method is based on the sequential quadratic programming (SQP) for estimating parameters in the transducer's lumped model and has been implemented by the use of LabVIEW graphical language. Using the implemented estimation software, the accuracy of parameter estimation has been verified and our implemented estimation method has been evaluated by the comparison of the estimated transducer parameter values with the designed ones for a practically fabricated floating mass transducer for IMEHDs.

PBGA Packaging Reliability under Satellite Random Vibration (인공위성 임의진동에서의 PBGA 패키징 신뢰성)

  • Lee, Seok-min;Hwang, Do-soon;Kim, Sun Won;Kim, Yeong Kook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.10
    • /
    • pp.876-882
    • /
    • 2018
  • The purpose of this research is to verify the feasibility of Plastic Ball Grid Array (PBGA), one of the most popular chip packaging types for commercial electronics, under strong random vibration occurred in satellite during launch. Experiment were performed by preparing daisy chained PCB specimen, where large size PBGA were surface mounted, and the PCB was fixed to an aluminum frame which is commonly used to install the electronics parts to satellite. Then the entire sample was fixed to vibration tester. The random vibration power spectrum density employed in the tests were composed of two steps, the acceptance level of 22.7 Grms, and qualification level of 32.1 Grms with given period of time. The test results showed no solder cracks, which provided the strong structural integrity and feasibility evidences of the PBGA packaging to aerospace electronics. Numerical analyses were also performed to calculate the solder stresses and analyze their development mechanism.

$H{\infty}$-force control of a artificial finger with distributed force sensor and piezoelectric actuator (분포센서를 가진 인공지의 $H{\infty}$-힘제어)

  • ;;;;Seiji Chonan
    • Journal of KSNVE
    • /
    • v.6 no.5
    • /
    • pp.555-565
    • /
    • 1996
  • This paper is concerned with the theoretical and experimental study on the force control of a miniature robotic finger that grasps an object at three other positions with the fingertip. The artificial finger is a uniform flexible cantilever beam equipped with a distributed set of compact grasping force sensors. Control action is applied by a piezoceramic bimorph strip placed at the base of the finger. The mathematical model of the assembled electro- mechanical system is developed. The distributed sensors are described by a set of concentrated mass-spring system. The formulated equations of motion are then applied to a control problem in which the finger is commanded to grasp an object. The H$_{\infty}$-controller is introduced to drive the finger. The usefulness of the proposed control technique is verified by simulation and experiment..

  • PDF

Development of Artificial Neural Network Model for Estimation of Cable Tension of Cable-Stayed Bridge (사장교 케이블의 장력 추정을 위한 인공신경망 모델 개발)

  • Kim, Ki-Jung;Park, Yoo-Sin;Park, Sung-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.414-419
    • /
    • 2020
  • An artificial intelligence-based cable tension estimation model was developed to expand the utilization of data obtained from cable accelerometers of cable-stayed bridges. The model was based on an algorithm for selecting the natural frequency in the tension estimation process based on the vibration method and an applied artificial neural network (ANN). The training data of the ANN was composed after converting the cable acceleration data into the frequency, and machine learning was carried out using the characteristics with a pattern on the natural frequency. When developing the training data, the frequencies with various amplitudes can be used to represent the frequencies of multiple shapes to improve the selection performance for natural frequencies. The performance of the model was estimated by comparing it with the control criteria of the tension estimated by an expert. As a result of the verification using 139 frequencies obtained from the cable accelerometer as the input, the natural frequency was determined to be similar to the real criteria and the estimated tension of the cable by the natural frequency was 96.4% of the criteria.

A Study on Generating Virtual Shot-Gathers from Traffic Noise Data (교통차량진동 자료에 대한 최적 가상공통송신원모음 제작 연구)

  • Woohyun Son;Yunsuk Choi;Seonghyung Jang;Donghoon Lee;Snons Cheong;Yonghwan Joo;Byoung-yeop Kim
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.4
    • /
    • pp.229-237
    • /
    • 2023
  • The use of artificial sources such as explosives and mechanical vibrations for seismic exploration in urban areas poses challenges, as the vibrations and noise generated can lead to complaints. As an alternative to artificial sources, the surface waves generated by traffic noise can be used to investigate the subsurface properties of urban areas. However, traffic noise takes the form of plane waves moving continuously at a constant speed. To apply existing surface wave processing/inversion techniques to traffic noise, the recorded data need to be transformed into a virtual shot gather format using seismic interferometry. In this study, various seismic interferometry methods were applied to traffic noise data, and the optimal method was derived by comparing the results in the Radon and F-K domains. Additionally, the data acquired using various receiver arrays were processed using seismic interferometry, and the results were compared and analyzed to determine the most optimal receiver array direction for exploration.