• Title/Summary/Keyword: 인공지능-딥러닝

Search Result 699, Processing Time 0.029 seconds

CNN Architecture for Accurately and Efficiently Learning a 3D Triangular Mesh (3차원 삼각형 메쉬를 정확하고 효율적으로 학습하기 위한 CNN 아키텍처)

  • Hong Eun Na;Jong-Hyun Kim
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.369-372
    • /
    • 2023
  • 본 논문에서는 삼각형 구조로 구성된 3차원 메쉬(Mesh)에서 합성곱 신경망(Convolution Neural Network, CNN)을 응용하여 정확도가 높은 새로운 학습 표현 기법을 제시한다. 우리는 메쉬를 구성하고 있는 폴리곤의 edge와 face의 로컬 특징을 기반으로 학습을 진행한다. 일반적으로 딥러닝은 인공신경망을 수많은 계층 형태로 연결한 기법을 말하며, 주요 처리 대상은 1, 2차원 데이터 형태인 오디오 파일과 이미지였다. 인공지능에 대한 연구가 지속되면서 3차원 딥러닝이 도입되었지만, 기존의 학습과는 달리 3차원 딥러닝은 데이터의 확보가 쉽지 않다. 혼합현실과 메타버스 시장의 확대로 인해 3차원 모델링 시장이 증가하고, 기술의 발전으로 데이터를 획득할 수 있는 방법이 생겼지만, 3차원 데이터를 직접적으로 학습에 이용하는 방식으로 적용하는 것은 쉽지 않다. 그렇게 때문에 본 논문에서는 산업 현장에서 이용되는 데이터인 메쉬 구조를 폴리곤의 최소 단위인 삼각형 형태로 구성하여 학습 데이터를 구성해 기존의 방법보다 정확도가 높은 학습 기법을 제안한다.

  • PDF

산업의 변화와 인공지능

  • Jeong, Sang-Geun
    • Information and Communications Magazine
    • /
    • v.33 no.10
    • /
    • pp.57-59
    • /
    • 2016
  • 본고에서는 플랫폼 산업으로 빠르게 재편되고 있는 산업계의 변화에 대해서 언급하고, 플랫폼 산업의 핵심 경쟁력 중 하나로써 인공지능을 살펴본다. 특히 최근 인공지능기술로 각광받고 있는 딥러닝과 플랫폼 비즈니스의 상호 상승작용을 고찰함으로써 향후 산업계에 필요한 핵심 경쟁력을 살펴본다.

A Study on In-memory based Distributed Frameworks for Deep Learning (인메모리 기반 딥러닝 기술을 위한 분산 프레임워크에 관한 연구)

  • Cho, Hyeyoung;Yu, Jung-Lok
    • Annual Conference of KIPS
    • /
    • 2016.10a
    • /
    • pp.45-46
    • /
    • 2016
  • 최근 GPU를 비롯한 하드웨어의 성능이 급격이 증가하면서 인공지능, 딥러닝 기술에 대한 관심이 높아지고 있다. 또한 데이터가 더욱 방대해 지면서 대용량 데이터를 처리하고 위한 딥러닝 분산 프레임워크에 대한 필요성이 제기되고 있다. 이에 본 논문에서는 대규모의 분산 환경에서 딥러닝 고속 처리를 위한 분산 프레임워크를 비교 분석하였다. 특히 최근 주목받고 있는 인메모리 기반 분산 프레임워크인 Spark, SparkNet, HeteroSpark의 특징을 비교 분석하였다.

Deep Learning-based Speech Voice Separation Training To Enhance STT Performance (STT 성능 향상을 위한 딥러닝 기반 발화 음성 분리학습)

  • Kim, Bokyoung;Yang, Youngjun;Hwang, Yonghae;Kim, Kyuheon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.851-853
    • /
    • 2022
  • 인공지능을 활용한 다양한 딥러닝 기술의 보급과 상용화로 오디오 음성 인식 분야에서도 음성 인식의 정확도를 높이기 위한 다양한 연구가 진행되고 있다. 최근 STT 를 위한 음성 인식 엔진은 딥러닝 기술을 기반으로 과거에 비해 높은 정확도를 보이고 있다. 하지만 예능 프로그램, 드라마, 스포츠 방송 등과 같이 비음성 신호와 음성 신호가 함께 녹음되는 오디오의 경우 음성 인식 정확도가 크게 낮아지는 문제가 발생한다. 이에 본 연구에서는 다양한 장르의 오디오를 음성과 음악을 분리하는 딥러닝 모델을 활용하여 음성 신호와 비음성 신호로 분리하는 방법을 제시하고, STT 결과를 분석하여 음성 인식의 정확도를 높이기 위한 연구 방향을 제시한다.

  • PDF

A Training Case Study of Deep Learning Artificial Neural Networks for Teacher Educations (교사교육을 위한 딥러닝 인공신경망 교육 사례 연구)

  • Hur, Kyeong
    • 한국정보교육학회:학술대회논문집
    • /
    • 2021.08a
    • /
    • pp.385-391
    • /
    • 2021
  • In this paper, a case of deep learning artificial neural network education was studied for artificial intelligence literacy education for preservice teachers and incumbent teachers. In addition, through the proposed educational case, we tried to explore the contents of artificial neural network principle education that elementary, middle and high school students can experience. To this end, first, an example of training on the principle of operation of an artificial neural network that recognizes two types of images is presented. And as an artificial neural network extension application education case, an artificial neural network education case for recognizing three types of images was presented. The number of output layers was changed according to the number of images to be recognized by the artificial neural network, and the cases implemented in a spreadsheet were divided and explained. In addition, in order to experience the operation results of the artificial neural network, we presented the educational contents to directly write the learning data necessary for the artificial neural network of the supervised learning method. In this paper, the implementation of the artificial neural network and the recognition test results are visually presented using a spreadsheet.

  • PDF

ICLAL: In-Context Learning-Based Audio-Language Multi-Modal Deep Learning Models (ICLAL: 인 컨텍스트 러닝 기반 오디오-언어 멀티 모달 딥러닝 모델)

  • Jun Yeong Park;Jinyoung Yeo;Go-Eun Lee;Chang Hwan Choi;Sang-Il Choi
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.514-517
    • /
    • 2023
  • 본 연구는 인 컨택스트 러닝 (In-Context Learning)을 오디오-언어 작업에 적용하기 위한 멀티모달 (Multi-Modal) 딥러닝 모델을 다룬다. 해당 모델을 통해 학습 단계에서 오디오와 텍스트의 소통 가능한 형태의 표현 (Representation)을 학습하고 여러가지 오디오-텍스트 작업을 수행할 수 있는 멀티모달 딥러닝 모델을 개발하는 것이 본 연구의 목적이다. 모델은 오디오 인코더와 언어 인코더가 연결된 구조를 가지고 있으며, 언어 모델은 6.7B, 30B 의 파라미터 수를 가진 자동회귀 (Autoregressive) 대형 언어 모델 (Large Language Model)을 사용한다 오디오 인코더는 자기지도학습 (Self-Supervised Learning)을 기반으로 사전학습 된 오디오 특징 추출 모델이다. 언어모델이 상대적으로 대용량이기 언어모델의 파라미터를 고정하고 오디오 인코더의 파라미터만 업데이트하는 프로즌 (Frozen) 방법으로 학습한다. 학습을 위한 과제는 음성인식 (Automatic Speech Recognition)과 요약 (Abstractive Summarization) 이다. 학습을 마친 후 질의응답 (Question Answering) 작업으로 테스트를 진행했다. 그 결과, 정답 문장을 생성하기 위해서는 추가적인 학습이 필요한 것으로 보였으나, 음성인식으로 사전학습 한 모델의 경우 정답과 유사한 키워드를 사용하는 문법적으로 올바른 문장을 생성함을 확인했다.

Broadcasting Software System for Interactive Service based on Deep Learning (차세대 딥러닝 인공지능을 이용한 양방향 서비스 방송 소프트웨어 시스템)

  • Yang, Geunseok;Shin, Yongwoo;Roh, Minchul;Kang, Seongho;Joo, Ingyu;Kwak, Jaechul;Ku, Jinwon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2017.06a
    • /
    • pp.26-28
    • /
    • 2017
  • 스마트폰 보유율과 모바일 이용 행태가 급변함에 따라 방송사에서는 양방향 서비스를 포함한 다양한 방송 서비스를 제공하려고 노력하고 있다. 양방향 서비스 방송에서 시청자가 보낸 문구를 실제 화면에 보여주기까지 PD 와 담당자들의 수작업이 필요하다. 하지만 하루 평균 약 7,200 건 (MBC 오늘아침 소통중계)의 양방향 서비스 관련 로그가 남게 되어, PD 가 일일이 판별하기에는 많은 노력이 따른다. 이러한 불필요한 노력을 줄이기 위해 본 논문에서는 감정 분석을 이용한 딥러닝 인공지능 기반 양방향 서비스 방송 소프트웨어 시스템을 제안한다. 첫째, 시청자들이 전송한 의견, 건의사항, 내용 등을 전처리 과정을 진행한다. 둘째, 감정 사전을 이용해 전처리 된 단어와 비교하여 시청자가 보낸 문구의 감정 점수를 계산한다. 셋째, 과거 실제 방송에 송출된 시청자 문구를 감정 점수와 함께 딥러닝을 이용하여 훈련시킨다. 본 논문의 성능을 평가하기 위해, 2017 년 생방송 오늘아침 소통중계에 사례연구를 진행하였고 효율성을 보였다. 앞으로 이러한 양방향 서비스 방송 소프트웨어 시스템 도입으로, PD 가 방송 제작에 더욱 집중 할 수 있도록 차별화된 방송을 준비하는데 크게 기여할 것이라 기대한다.

  • PDF

Cognitive characteristics of artificial intelligence techniques for searching and interpreting disaster information (재난 정보 검색 및 해석을 위한 인공지능 기법의 인지 특성)

  • SeokHwan Hwang;Jeongha Lee;Byoung-Hwa Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.450-450
    • /
    • 2023
  • 인공지능 기법의 급격한 발달에 따라 다양한 분야에서 인공지능 기법을 활용하기 위한 노력이 이루어지고 있다. 재난은 발생하기 전에 다양한 전조 현상을 나타내나 수많은 정보 속에서 전조 증상을 정확히 인지하는 것은 매우 어렵다. 따라서 인공지능은 방대한 사전 정보의 해석을 통해 재난 발생의 전조를 신속 정확하게 감지하는데 최적의 기술이다. 최근 OpenAI의 딥러닝 기반의 언어모델인 GPT(Generative Pre-trained Transformer)의 성능이 기대 이상을 나타내면서 많은 분야에서 GPT에 대한 관심과 실험이 시작되고 있다. 본 실험에서는 GPT를 이용하여 재난 검색 및 해석의 특징을 검토하여 보았다. 정확한 재난 기록은 정확한 재난 예측을 위해 반드시 필요한 자료이나 부정확한 재난 기록은 그 기록이 비록 방대하더라도 오히려 예측의 신뢰도를 크게 떨어뜨린 수 있다. 따라서 비지도학습 기반의 대화형 인공지능을 재난 검색에 활용하기 위해서는 인공지능 기법의 인지 특성을 반드시 가늠해 봐야 한다. 향후 보다 많은 연구자가 이에 관심을 가진다면 보다 정확한 인공지능 기반의 재난 탐지 기술의 개발이 가능할 것으로 기대된다.

  • PDF

Trends in detection based on deep learning for IoT security threats (IoT 보안 위협에 대한 딥러닝 기반의 탐지 동향)

  • Kim, Hyun-Ji;Seo, Hwa-Jeong
    • Annual Conference of KIPS
    • /
    • 2020.11a
    • /
    • pp.862-865
    • /
    • 2020
  • 최근 5G, 인공지능(AI) 등과 함께 사물인터넷 (IoT) 기술이 주목받고 있으며, 보안 위협 또한 증가하고 있다. IoT 기기에 대한 다양한 공격 기법들이 존재하는 만큼 IoT 보안에 관한 연구 또한 활발하게 진행되고 있다. 본 논문에서는 IoT 환경에서의 보안 위협에 대응하기 위한 딥러닝 기반의 탐지기법들의 최신 연구 동향과 앞으로의 방향을 살펴본다.

Age and gender prediction model using CNN (CNN 알고리즘을 이용한 나이와 성별 구분 모델)

  • Sung Han Shin;Heung Seok Jeon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.47-50
    • /
    • 2023
  • 본 논문에서는 딥러닝 CNN 알고리즘을 이용하여 사람의 얼굴 이미지를 학습한 다음 나이와 성별을 예측하는 시스템을 제안한다. 이 시스템은 개개인 마다 각기 다른 외형적 특성을 고려하여 이를 분석한 다음 이에 맞는 헤어 스타일, 옷차림을 추천할 수 있다. 해당 기술을 활용하여 메타버스 아바타 생성에 사용자의 얼굴과 같은 신체적 특성을 고려할 수 있다. 향후에는 신체 전체를 이미지화하여 보다 더 다양한 정보를 인식할 수 있도록 연구를 진행할 것이다.

  • PDF