• Title/Summary/Keyword: 인공지능-딥러닝

Search Result 699, Processing Time 0.026 seconds

Memory data layout and DMA transfer technique research For efficient data transfer of CNN accelerator (CNN 가속기의 효율적인 데이터 전송을 위한 메모리 데이터 레이아웃 및 DMA 전송기법 연구)

  • Cho, Seok-Jae;Park, Sungkyung;Park, Chester Sungchung
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.559-569
    • /
    • 2020
  • One of the deep-running algorithms, CNN's artificial intelligence application uses off-chip memory to store data on the Convolution Layer. DMA can reduce processor load at every data transfer. It can also reduce application performance degradation by varying the order in which data from the Convolution layer is transmitted to the global buffer of the accelerator. For basic layouts with continuous memory addresses, SG-DMA showed about 3.4 times performance improvement in pre-setting DMA compared to using ordinaly DMA, and for Ideal layouts with discontinuous memory addresses, the ordinal DMA was about 1396 cycles faster than SG-DMA. Experiments have shown that a combination of memory data layout and DMA can reduce the DMA preset load by about 86 percent.

Transformative and Transhumanism in the film (영화 <엘리시움(Elysium)>에 비춰진 트랜스포머티브와 트랜스휴머니즘)

  • Kim, Hee-Kyung
    • Journal of Digital Contents Society
    • /
    • v.19 no.8
    • /
    • pp.1481-1488
    • /
    • 2018
  • Recently, the terms of the fourth industrial revolution, deep running, artificial intelligence, post-human, and trans-human are frequently heard. These terms suggest that the rapid development of science and technology will make the future different from the present. However, rather than giving priority to striking a different future phenomenon, I think it is first of all to understand what kind of future technology or phenomenon is in the present stage. Therefore, in this study, in particular, the actual cases of linking or combining science and technology to the human body are increasing. So if you want to call this human being what kind of characteristics you have. To do this, I first looked at the meaning of trance, transformative, and trans humanism. Next, I looked at the relationship between science and technology and transhumanism. Next, we analyzed four transformative characteristics in the film Elysium and examined how it affects the understanding of transhumanism. This process will be the starting point for understanding post-human and post-humanism in the future.

A Methodology for Realty Time-series Generation Using Generative Adversarial Network (적대적 생성망을 이용한 부동산 시계열 데이터 생성 방안)

  • Ryu, Jae-Pil;Hahn, Chang-Hoon;Shin, Hyun-Joon
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.10
    • /
    • pp.9-17
    • /
    • 2021
  • With the advancement of big data analysis, artificial intelligence, machine learning, etc., data analytics technology has developed to help with optimal decision-making. However, in certain areas, the lack of data restricts the use of these techniques. For example, real estate related data often have a long release cycle because of its recent release or being a non-liquid asset. In order to overcome these limitations, we studied the scalability of the existing time series through the TimeGAN model. A total of 45 time series related to weekly real estate data were collected within the period of 2012 to 2021, and a total of 15 final time series were selected by considering the correlation between the time series. As a result of data expansion through the TimeGAN model for the 15 time series, it was found that the statistical distribution between the real data and the extended data was similar through the PCA and t-SNE visualization algorithms.

Analysis of Pressure Ulcer Nursing Records with Artificial Intelligence-based Natural Language Processing (인공지능 기반 자연어처리를 적용한 욕창간호기록 분석)

  • Kim, Myoung Soo;Ryu, Jung-Mi
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.10
    • /
    • pp.365-372
    • /
    • 2021
  • The purpose of this study was to examine the statements characteristics of the pressure ulcer nursing record by natural langage processing and assess the prediction accuracy for each pressure ulcer stage. Nursing records related to pressure ulcer were analyzed using descriptive statistics, and word cloud generators (http://wordcloud.kr) were used to examine the characteristics of words in the pressure ulcer prevention nursing records. The accuracy ratio for the pressure ulcer stage was calculated using deep learning. As a result of the study, the second stage and the deep tissue injury suspected were 23.1% and 23.0%, respectively, and the most frequent key words were erythema, blisters, bark, area, and size. The stages with high prediction accuracy were in the order of stage 0, deep tissue injury suspected, and stage 2. These results suggest that it can be developed as a clinical decision support system available to practice for nurses at the pressure ulcer prevention care.

Comparison of Power Consumption Prediction Scheme Based on Artificial Intelligence (인공지능 기반 전력량예측 기법의 비교)

  • Lee, Dong-Gu;Sun, Young-Ghyu;Kim, Soo-Hyun;Sim, Issac;Hwang, Yu-Min;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.4
    • /
    • pp.161-167
    • /
    • 2019
  • Recently, demand forecasting techniques have been actively studied due to interest in stable power supply with surging power demand, and increase in spread of smart meters that enable real-time power measurement. In this study, we proceeded the deep learning prediction model experiments which learns actual measured power usage data of home and outputs the forecasting result. And we proceeded pre-processing with moving average method. The predicted value made by the model is evaluated with the actual measured data. Through this forecasting, it is possible to lower the power supply reserve ratio and reduce the waste of the unused power. In this paper, we conducted experiments on three types of networks: Multi Layer Perceptron (MLP), Recurrent Neural Network (RNN), and Long Short Term Memory (LSTM) and we evaluate the results of each scheme. Evaluation is conducted with following method: MSE(Mean Squared Error) method and MAE(Mean Absolute Error).

A Smart Closet Using Deep Learning and Image Recognition for the Blind (시각장애인을 위한 딥러닝과 이미지인식을 이용한 스마트 옷장)

  • Choi, So-Hee;Kim, Ju-Ha;Oh, Jae-Dong;Kong, Ki-Sok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.6
    • /
    • pp.51-58
    • /
    • 2020
  • The blind people have difficulty living an independent clothing life. The furniture and home appliance are adding AI or IoT with the recent growth of the smart appliance market. To support the independent clothing life of the blind, this paper suggests a smart wardrobe with closet control function, voice recognition function and clothes information recognition using CNN algorithm. The number of layers of the model was changed and Maxpooling was adjusted to create the model to increase accuracy in the process of recognizing clothes. Early Stopping Callback option is applied to ensure learning accuracy when creating a model. We added Dropout to prevent overfitting. The final model created by this process can be found to have 80 percent accuracy in clothing recognition.

A Study on Cathodic Protection Rectifier Control of City Gas Pipes using Deep Learning (딥러닝을 활용한 도시가스배관의 전기방식(Cathodic Protection) 정류기 제어에 관한 연구)

  • Hyung-Min Lee;Gun-Tek Lim;Guy-Sun Cho
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.2
    • /
    • pp.49-56
    • /
    • 2023
  • As AI (Artificial Intelligence)-related technologies are highly developed due to the 4th industrial revolution, cases of applying AI in various fields are increasing. The main reason is that there are practical limits to direct processing and analysis of exponentially increasing data as information and communication technology develops, and the risk of human error can be reduced by applying new technologies. In this study, after collecting the data received from the 'remote potential measurement terminal (T/B, Test Box)' and the output of the 'remote rectifier' at that time, AI was trained. AI learning data was obtained through data augmentation through regression analysis of the initially collected data, and the learning model applied the value-based Q-Learning model among deep reinforcement learning (DRL) algorithms. did The AI that has completed data learning is put into the actual city gas supply area, and based on the received remote T/B data, it is verified that the AI responds appropriately, and through this, AI can be used as a suitable means for electricity management in the future. want to verify.

Detection Model of Fruit Epidermal Defects Using YOLOv3: A Case of Peach (YOLOv3을 이용한 과일표피 불량검출 모델: 복숭아 사례)

  • Hee Jun Lee;Won Seok Lee;In Hyeok Choi;Choong Kwon Lee
    • Information Systems Review
    • /
    • v.22 no.1
    • /
    • pp.113-124
    • /
    • 2020
  • In the operation of farms, it is very important to evaluate the quality of harvested crops and to classify defective products. However, farmers have difficulty coping with the cost and time required for quality assessment due to insufficient capital and manpower. This study thus aims to detect defects by analyzing the epidermis of fruit using deep learning algorithm. We developed a model that can analyze the epidermis by applying YOLOv3 algorithm based on Region Convolutional Neural Network to video images of peach. A total of four classes were selected and trained. Through 97,600 epochs, a high performance detection model was obtained. The crop failure detection model proposed in this study can be used to automate the process of data collection, quality evaluation through analyzed data, and defect detection. In particular, we have developed an analytical model for peach, which is the most vulnerable to external wounds among crops, so it is expected to be applicable to other crops in farming.

Data collection strategy for building rainfall-runoff LSTM model predicting daily runoff (강수-일유출량 추정 LSTM 모형의 구축을 위한 자료 수집 방안)

  • Kim, Dongkyun;Kang, Seokkoo
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.10
    • /
    • pp.795-805
    • /
    • 2021
  • In this study, after developing an LSTM-based deep learning model for estimating daily runoff in the Soyang River Dam basin, the accuracy of the model for various combinations of model structure and input data was investigated. A model was built based on the database consisting of average daily precipitation, average daily temperature, average daily wind speed (input up to here), and daily average flow rate (output) during the first 12 years (1997.1.1-2008.12.31). The Nash-Sutcliffe Model Efficiency Coefficient (NSE) and RMSE were examined for validation using the flow discharge data of the later 12 years (2009.1.1-2020.12.31). The combination that showed the highest accuracy was the case in which all possible input data (12 years of daily precipitation, weather temperature, wind speed) were used on the LSTM model structure with 64 hidden units. The NSE and RMSE of the verification period were 0.862 and 76.8 m3/s, respectively. When the number of hidden units of LSTM exceeds 500, the performance degradation of the model due to overfitting begins to appear, and when the number of hidden units exceeds 1000, the overfitting problem becomes prominent. A model with very high performance (NSE=0.8~0.84) could be obtained when only 12 years of daily precipitation was used for model training. A model with reasonably high performance (NSE=0.63-0.85) when only one year of input data was used for model training. In particular, an accurate model (NSE=0.85) could be obtained if the one year of training data contains a wide magnitude of flow events such as extreme flow and droughts as well as normal events. If the training data includes both the normal and extreme flow rates, input data that is longer than 5 years did not significantly improve the model performance.

A Study on Deep Learning-based Pedestrian Detection and Alarm System (딥러닝 기반의 보행자 탐지 및 경보 시스템 연구)

  • Kim, Jeong-Hwan;Shin, Yong-Hyeon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.4
    • /
    • pp.58-70
    • /
    • 2019
  • In the case of a pedestrian traffic accident, it has a large-scale danger directly connected by a fatal accident at the time of the accident. The domestic ITS is not used for intelligent risk classification because it is used only for collecting traffic information despite of the construction of good quality traffic infrastructure. The CNN based pedestrian detection classification model, which is a major component of the proposed system, is implemented on an embedded system assuming that it is installed and operated in a restricted environment. A new model was created by improving YOLO's artificial neural network, and the real-time detection speed result of average accuracy 86.29% and 21.1 fps was shown with 20,000 iterative learning. And we constructed a protocol interworking scenario and implementation of a system that can connect with the ITS. If a pedestrian accident prevention system connected with ITS will be implemented through this study, it will help to reduce the cost of constructing a new infrastructure and reduce the incidence of traffic accidents for pedestrians, and we can also reduce the cost for system monitoring.