• Title/Summary/Keyword: 인공지능-딥러닝

Search Result 699, Processing Time 0.026 seconds

Personalized Speech Classification Scheme for the Smart Speaker Accessibility Improvement of the Speech-Impaired people (언어장애인의 스마트스피커 접근성 향상을 위한 개인화된 음성 분류 기법)

  • SeungKwon Lee;U-Jin Choe;Gwangil Jeon
    • Smart Media Journal
    • /
    • v.11 no.11
    • /
    • pp.17-24
    • /
    • 2022
  • With the spread of smart speakers based on voice recognition technology and deep learning technology, not only non-disabled people, but also the blind or physically handicapped can easily control home appliances such as lights and TVs through voice by linking home network services. This has greatly improved the quality of life. However, in the case of speech-impaired people, it is impossible to use the useful services of the smart speaker because they have inaccurate pronunciation due to articulation or speech disorders. In this paper, we propose a personalized voice classification technique for the speech-impaired to use for some of the functions provided by the smart speaker. The goal of this paper is to increase the recognition rate and accuracy of sentences spoken by speech-impaired people even with a small amount of data and a short learning time so that the service provided by the smart speaker can be actually used. In this paper, data augmentation and one cycle learning rate optimization technique were applied while fine-tuning ResNet18 model. Through an experiment, after recording 10 times for each 30 smart speaker commands, and learning within 3 minutes, the speech classification recognition rate was about 95.2%.

Fake News Detection Using CNN-based Sentiment Change Patterns (CNN 기반 감성 변화 패턴을 이용한 가짜뉴스 탐지)

  • Tae Won Lee;Ji Su Park;Jin Gon Shon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.4
    • /
    • pp.179-188
    • /
    • 2023
  • Recently, fake news disguises the form of news content and appears whenever important events occur, causing social confusion. Accordingly, artificial intelligence technology is used as a research to detect fake news. Fake news detection approaches such as automatically recognizing and blocking fake news through natural language processing or detecting social media influencer accounts that spread false information by combining with network causal inference could be implemented through deep learning. However, fake news detection is classified as a difficult problem to solve among many natural language processing fields. Due to the variety of forms and expressions of fake news, the difficulty of feature extraction is high, and there are various limitations, such as that one feature may have different meanings depending on the category to which the news belongs. In this paper, emotional change patterns are presented as an additional identification criterion for detecting fake news. We propose a model with improved performance by applying a convolutional neural network to a fake news data set to perform analysis based on content characteristics and additionally analyze emotional change patterns. Sentimental polarity is calculated for the sentences constituting the news and the result value dependent on the sentence order can be obtained by applying long-term and short-term memory. This is defined as a pattern of emotional change and combined with the content characteristics of news to be used as an independent variable in the proposed model for fake news detection. We train the proposed model and comparison model by deep learning and conduct an experiment using a fake news data set to confirm that emotion change patterns can improve fake news detection performance.

Detail Focused Image Classifier Model for Traditional Images (전통문화 이미지를 위한 세부 자질 주목형 이미지 자동 분석기)

  • Kim, Kuekyeng;Hur, Yuna;Kim, Gyeongmin;Yu, Wonhee;Lim, Heuiseok
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.12
    • /
    • pp.85-92
    • /
    • 2017
  • As accessibility toward traditional cultural contents drops compared to its increase in production, the need for higher accessibility for continued management and research to exist. For this, this paper introduces an image classifier model for traditional images based on artificial neural networks, which converts the input image's features into a vector space and by utilizing a RNN based model it recognizes and compares the details of the input which enables the classification of traditional images. This enables the classifiers to classify similarly looking traditional images more precisely by focusing on the details. For the training of this model, a wide range of images were arranged and collected based on the format of the Korean information culture field, which contributes to other researches related to the fields of using traditional cultural images. Also, this research contributes to the further activation of demand, supply, and researches related to traditional culture.

A Study for Generation of Artificial Lunar Topography Image Dataset Using a Deep Learning Based Style Transfer Technique (딥러닝 기반 스타일 변환 기법을 활용한 인공 달 지형 영상 데이터 생성 방안에 관한 연구)

  • Na, Jong-Ho;Lee, Su-Deuk;Shin, Hyu-Soung
    • Tunnel and Underground Space
    • /
    • v.32 no.2
    • /
    • pp.131-143
    • /
    • 2022
  • The lunar exploration autonomous vehicle operates based on the lunar topography information obtained from real-time image characterization. For highly accurate topography characterization, a large number of training images with various background conditions are required. Since the real lunar topography images are difficult to obtain, it should be helpful to be able to generate mimic lunar image data artificially on the basis of the planetary analogs site images and real lunar images available. In this study, we aim to artificially create lunar topography images by using the location information-based style transfer algorithm known as Wavelet Correct Transform (WCT2). We conducted comparative experiments using lunar analog site images and real lunar topography images taken during China's and America's lunar-exploring projects (i.e., Chang'e and Apollo) to assess the efficacy of our suggested approach. The results show that the proposed techniques can create realistic images, which preserve the topography information of the analog site image while still showing the same condition as an image taken on lunar surface. The proposed algorithm also outperforms a conventional algorithm, Deep Photo Style Transfer (DPST) in terms of temporal and visual aspects. For future work, we intend to use the generated styled image data in combination with real image data for training lunar topography objects to be applied for topographic detection and segmentation. It is expected that this approach can significantly improve the performance of detection and segmentation models on real lunar topography images.

A Study on the Cloud Detection Technique of Heterogeneous Sensors Using Modified DeepLabV3+ (DeepLabV3+를 이용한 이종 센서의 구름탐지 기법 연구)

  • Kim, Mi-Jeong;Ko, Yun-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.511-521
    • /
    • 2022
  • Cloud detection and removal from satellite images is an essential process for topographic observation and analysis. Threshold-based cloud detection techniques show stable performance because they detect using the physical characteristics of clouds, but they have the disadvantage of requiring all channels' images and long computational time. Cloud detection techniques using deep learning, which have been studied recently, show short computational time and excellent performance even using only four or less channel (RGB, NIR) images. In this paper, we confirm the performance dependence of the deep learning network according to the heterogeneous learning dataset with different resolutions. The DeepLabV3+ network was improved so that channel features of cloud detection were extracted and learned with two published heterogeneous datasets and mixed data respectively. As a result of the experiment, clouds' Jaccard index was low in a network that learned with different kind of images from test images. However, clouds' Jaccard index was high in a network learned with mixed data that added some of the same kind of test data. Clouds are not structured in a shape, so reflecting channel features in learning is more effective in cloud detection than spatial features. It is necessary to learn channel features of each satellite sensors for cloud detection. Therefore, cloud detection of heterogeneous sensors with different resolutions is very dependent on the learning dataset.

Examination of Aggregate Quality Using Image Processing Based on Deep-Learning (딥러닝 기반 영상처리를 이용한 골재 품질 검사)

  • Kim, Seong Kyu;Choi, Woo Bin;Lee, Jong Se;Lee, Won Gok;Choi, Gun Oh;Bae, You Suk
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.6
    • /
    • pp.255-266
    • /
    • 2022
  • The quality control of coarse aggregate among aggregates, which are the main ingredients of concrete, is currently carried out by SPC(Statistical Process Control) method through sampling. We construct a smart factory for manufacturing innovation by changing the quality control of coarse aggregates to inspect the coarse aggregates based on this image by acquired images through the camera instead of the current sieve analysis. First, obtained images were preprocessed, and HED(Hollistically-nested Edge Detection) which is the filter learned by deep learning segment each object. After analyzing each aggregate by image processing the segmentation result, fineness modulus and the aggregate shape rate are determined by analyzing result. The quality of aggregate obtained through the video was examined by calculate fineness modulus and aggregate shape rate and the accuracy of the algorithm was more than 90% accurate compared to that of aggregates through the sieve analysis. Furthermore, the aggregate shape rate could not be examined by conventional methods, but the content of this paper also allowed the measurement of the aggregate shape rate. For the aggregate shape rate, it was verified with the length of models, which showed a difference of ±4.5%. In the case of measuring the length of the aggregate, the algorithm result and actual length of the aggregate showed a ±6% difference. Analyzing the actual three-dimensional data in a two-dimensional video made a difference from the actual data, which requires further research.

Road Crack Detection based on Object Detection Algorithm using Unmanned Aerial Vehicle Image (드론영상을 이용한 물체탐지알고리즘 기반 도로균열탐지)

  • Kim, Jeong Min;Hyeon, Se Gwon;Chae, Jung Hwan;Do, Myung Sik
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.6
    • /
    • pp.155-163
    • /
    • 2019
  • This paper proposes a new methodology to recognize cracks on asphalt road surfaces using the image data obtained with drones. The target section was Yuseong-daero, the main highway of Daejeon. Furthermore, two object detection algorithms, such as Tiny-YOLO-V2 and Faster-RCNN, were used to recognize cracks on road surfaces, classify the crack types, and compare the experimental results. As a result, mean average precision of Faster-RCNN and Tiny-YOLO-V2 was 71% and 33%, respectively. The Faster-RCNN algorithm, 2Stage Detection, showed better performance in identifying and separating road surface cracks than the Yolo algorithm, 1Stage Detection. In the future, it will be possible to prepare a plan for building an infrastructure asset-management system using drones and AI crack detection systems. An efficient and economical road-maintenance decision-support system will be established and an operating environment will be produced.

Generating Augmented Lifting Player using Pose Tracking

  • Choi, Jong-In;Kim, Jong-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.5
    • /
    • pp.19-26
    • /
    • 2020
  • This paper proposes a framework for creating acrobatic scenes such as soccer ball lifting using various users' videos. The proposed method can generate a desired result within a few seconds using a general video of user recorded with a mobile phone. The framework of this paper is largely divided into three parts. The first is to analyze the posture by receiving the user's video. To do this, the user can calculate the pose of the user by analyzing the video using a deep learning technique, and track the movement of a selected body part. The second is to analyze the movement trajectory of the selected body part and calculate the location and time of hitting the object. Finally, the trajectory of the object is generated using the analyzed hitting information. Then, a natural object lifting scenes synchronized with the input user's video can be generated. Physical-based optimization was used to generate a realistic moving object. Using the method of this paper, we can produce various augmented reality applications.

Demand Prediction of Furniture Component Order Using Deep Learning Techniques (딥러닝 기법을 활용한 가구 부자재 주문 수요예측)

  • Kim, Jae-Sung;Yang, Yeo-Jin;Oh, Min-Ji;Lee, Sung-Woong;Kwon, Sun-dong;Cho, Wan-Sup
    • The Journal of Bigdata
    • /
    • v.5 no.2
    • /
    • pp.111-120
    • /
    • 2020
  • Despite the recent economic contraction caused by the Corona 19 incident, interest in the residential environment is growing as more people live at home due to the increase in telecommuting, thereby increasing demand for remodeling. In addition, the government's real estate policy is also expected to have a visible impact on the sales of the interior and furniture industries as it shifts from regulatory policy to the expansion of housing supply. Accurate demand forecasting is a problem directly related to inventory management, and a good demand forecast can reduce logistics and inventory costs due to overproduction by eliminating the need to have unnecessary inventory. However, it is a difficult problem to predict accurate demand because external factors such as constantly changing economic trends, market trends, and social issues must be taken into account. In this study, LSTM model and 1D-CNN model were compared and analyzed by artificial intelligence-based time series analysis method to produce reliable results for manufacturers producing furniture components.

Pose Creation of Character in Two-Dimensional Cartoon through Human Pose Estimation (인간자세 추정방법에 의한 2차원 웹툰 캐릭터 포즈 생성)

  • Jeong, Hieyong;Shin, Choonsung
    • Journal of Broadcast Engineering
    • /
    • v.27 no.5
    • /
    • pp.718-727
    • /
    • 2022
  • The Korean domestic cartoon industry has grown explosively by 65% compared to the previous year. Then the market size is expected to exceed KRW 1 trillion. However, excessive work results in health deterioration. Moreover, this working environment makes the production of human resources insufficient, repeating a vicious cycle. Although some tasks require creation activity during cartoon production, there are still a lot of simple repetitive tasks. Therefore, this study aimed to develop a method for creating a character pose through human pose estimation (HPE). The HPE is to detect key points for each joint of a user. The primary role of the proposed method was to make each joint of the character match that of the human. The proposed method enabled us to create the pose of the two-dimensional cartoon character through the results. Furthermore, it was possible to save the static image for one character pose and the video for continuous character pose.