Muhammad Muzammil Azad;Atta Ur Rehman Shah;M.N. Prabhakar;Heung Soo Kim
Journal of the Computational Structural Engineering Institute of Korea
/
v.37
no.4
/
pp.225-232
/
2024
This study focuses on the determination of the fracture mode in composite laminates using deep learning. With the increase in the use of laminated composites in numerous engineering applications, the insurance of their integrity and performance is of paramount importance. However, owing to the complex nature of these materials, the identification of fracture modes is often a tedious and time-consuming task that requires critical domain knowledge. Therefore, to alleviate these issues, this study aims to utilize modern artificial intelligence technology to automate the fractographic analysis of laminated composites. To accomplish this goal, scanning electron microscopy (SEM) images of fractured tensile test specimens are obtained from laminated composites to showcase various fracture modes. These SEM images are then categorized based on numerous fracture modes, including fiber breakage, fiber pull-out, mix-mode fracture, matrix brittle fracture, and matrix ductile fracture. Next, the collective data for all classes are divided into train, test, and validation datasets. Two state-of-the-art, deep learning-based pre-trained models, namely, DenseNet and GoogleNet, are trained to learn the discriminative features for each fracture mode. The DenseNet models shows training and testing accuracies of 94.01% and 75.49%, respectively, whereas those of the GoogleNet model are 84.55% and 54.48%, respectively. The trained deep learning models are then validated on unseen validation datasets. This validation demonstrates that the DenseNet model, owing to its deeper architecture, can extract high-quality features, resulting in 84.44% validation accuracy. This value is 36.84% higher than that of the GoogleNet model. Hence, these results affirm that the DenseNet model is effective in performing fractographic analyses of laminated composites by predicting fracture modes with high precision.
X-ray image analysis is a very important field to improve the early diagnosis rate and prediction accuracy of periodontal disease. Research on the development and application of artificial intelligence-based algorithms to improve the quality of such dental X-ray images is being widely conducted worldwide. Thus, the aim of this study was to design a super-resolution algorithm for predicting periodontal disease and to evaluate its applicability in dental X-ray images. The super-resolution algorithm was constructed based on the convolution layer and ReLU, and an image obtained by up-sampling a low-resolution image by 2 times was used as an input data. Also, 1,500 dental X-ray data used for deep learning training were used. Quantitative evaluation of images used root mean square error and structural similarity, which are factors that can measure similarity through comparison of two images. In addition, the recently developed no-reference based natural image quality evaluator and blind/referenceless image spatial quality evaluator were additionally analyzed. According to the results, we confirmed that the average similarity and no-reference-based evaluation values were improved by 1.86 and 2.14 times, respectively, compared to the existing bicubic-based upsampling method when the proposed method was used. In conclusion, the super-resolution algorithm for predicting periodontal disease proved useful in dental X-ray images, and it is expected to be highly applicable in various fields in the future.
As deep learning-based object detection and recognition research have been developed recently, the scope of application to industry and real life is expanding. But deep learning-based systems in the construction system are still much less studied. Calculating materials in the construction system is still manual, so it is a reality that transactions of wrong volumn calculation are generated due to a lot of time required and difficulty in accurate accumulation. A fast and accurate automatic drawing recognition system is required to solve this problem. Therefore, we propose an AI-based automatic drawing recognition accumulation system that detects and recognizes steel materials in construction drawings. To accurately detect steel materials in construction drawings, we propose data augmentation techniques and spatial attention modules for improving small object detection performance based on YOLOv4. The detected steel material area is recognized by text, and the number of steel materials is integrated based on the predicted characters. Experimental results show that the proposed method increases the accuracy and precision by 1.8% and 16%, respectively, compared with the conventional YOLOv4. As for the proposed method, Precision performance was 0.938. The recall was 1. Average Precision AP0.5 was 99.4% and AP0.5:0.95 was 67%. Accuracy for character recognition obtained 99.9.% by configuring and learning a suitable dataset that contains fonts used in construction drawings compared to the 75.6% using the existing dataset. The average time required per image was 0.013 seconds in the detection, 0.65 seconds in character recognition, and 0.16 seconds in the accumulation, resulting in 0.84 seconds.
The various structures of artificial neural networks, such as convolutional neural networks (CNNs) and recurrent neural networks (RNNs), have been extensively studied and served as the backbone of numerous models. Among these, a transformer architecture has demonstrated its potential for natural language processing and become a subject of in-depth research. Currently, the techniques can be adapted for image processing through the modifications of its internal structure, leading to the development of Vision transformer (ViT) models. The ViTs have shown high accuracy and performance with large data-sets. This study aims to develop a ViT-based model for detecting pneumonia using chest X-ray images and quantitatively evaluate its performance. The various architectures of the ViT-based model were constructed by varying the number of encoder blocks, and different patch sizes were applied for network training. Also, the performance of the ViT-based model was compared to the CNN-based models, such as VGGNet, GoogLeNet, and ResNet. The results showed that the traninig efficiency and accuracy of the ViT-based model depended on the number of encoder blocks and the patch size, and the F1 scores of the ViT-based model ranged from 0.875 to 0.919. The training effeciency of the ViT-based model with a large patch size was superior to the CNN-based models, and the pneumonia detection accuracy of the ViT-based model was higher than that of the VGGNet. In conclusion, the ViT-based model can be potentially used for pneumonia detection using chest X-ray images, and the clinical availability of the ViT-based model would be improved by this study.
Deep learning using an artificial neural network has been recently researched and developed in various fields such as image recognition, big data and data analysis. However, federated learning has emerged to solve issues of data privacy invasion and problems that increase the cost and time required to learn. Federated learning presented learning techniques that would bring the benefits of distributed processing system while solving the problems of existing deep learning, but there were still problems with server-client system and motivations for providing learning data. So, we replaced the role of the server with a blockchain system in federated learning, and conducted research to solve the privacy and security problems that are associated with federated learning. In addition, we have implemented a blockchain-based system that motivates users by paying compensation for data provided by users, and requires less maintenance costs while maintaining the same accuracy as existing learning. In this paper, we present the experimental results to show the validity of the blockchain-based system, and compare the results of the existing federated learning with the blockchain-based federated learning. In addition, as a future study, we ended the thesis by presenting solutions to security problems and applicable business fields.
The Journal of the Korea institute of electronic communication sciences
/
v.12
no.2
/
pp.331-336
/
2017
The need for early fire detection technology is increasing in order to prevent fire disasters. Sensor device detection for heat, smoke and fire is widely used to detect flame and smoke, but this system is limited by the factors of the sensor environment. To solve these problems, many image-based fire detection systems are being developed. In this paper, we implemented a system to detect fire and smoke from camera input images using a convolution neural network. Through the implemented system using the convolution neural network, a feature map is generated for the smoke image and the fire image, and learning for classifying the smoke and fire is performed on the generated feature map. Experimental results on various images show excellent effects for classifying smoke and fire.
Due to COVID-19, Correct method of wearing mask is important to prevent COVID-19 and the other respiratory tract infections. And the deep learning technology in the image processing has been developed. The purpose of this study is to create the type of mask wearing dataset for deep learning models and select the deep learning model to detect the wearing mask correctly. The Image dataset is the 2,296 images acquired using a web crawler. Deep learning classification models provided by tensorflow are used to validate the dataset. And Object detection deep learning model YOLOs are used to select the detection deep learning model to detect the wearing mask correctly. In this process, this paper proposes to validate the type of mask wearing datasets and YOLOv5 is the effective model to detect the type of mask wearing. The experimental results show that reliable dataset is acquired and the YOLOv5 model effectively recognize type of mask wearing.
Annual Conference on Human and Language Technology
/
2020.10a
/
pp.421-426
/
2020
다중 도메인 목적 지향 대화에서 기존 딥 러닝을 이용한 대화 상태 추적(Dialog state tracking)은 여러 턴 동안 누적된 사용자와 시스템 간 대화를 입력 받아 슬롯 밸류(Slot value)를 추출하는 모델들이 연구되었다. 하지만 이 모델들은 대화가 길어질수록 연산량이 증가한다. 이에 본 논문에서는 다중 도메인 대화에서 누적된 대화의 history 없이 슬롯 밸류를 추출하는 방법을 제안한다. 하지만, 단순하게 history를 제거하고 현재 턴의 발화만 입력 받는 방법은 문맥 정보의 손실로 이어진다. 따라서 본 논문에서는 도메인 상태(Domain state)를 도입하여 매 턴 마다 대화 상태와 함께 추적하는 모델을 제안한다. 도메인 상태를 같이 추적함으로써 현재 어떠한 도메인에 대하여 대화가 진행되고 있는지를 파악한다. 또한, 함축된 문맥 정보를 담고 있는 이전 턴의 대화 상태와 도메인 상태를 현재 턴의 발화와 같이 입력 받아 정보의 손실을 줄였다. 대표적인 데이터 셋인 MultiWOZ 2.0과 MultiWOZ 2.1에서 실험한 결과, 대화의 history를 사용하지 않고도 대화 상태 추적에 있어 좋은 성능을 보이는 것을 확인하였다. 또한, 시스템 응답과 과거 발화에 대한 의존성을 제거하여 end-to-end 대화 시스템으로의 확장이 좀 더 용이할 것으로 기대된다.
The Journal of the Convergence on Culture Technology
/
v.6
no.4
/
pp.225-230
/
2020
This paper highlights the influence and the importance of the syntactic-grammatical knowledge on "the reading machine", appeared in Jackendoff (1999). Due to the lack of the detailed testing and implementation in his research, this paper tests an extensive data array using a component of Google Translate, currently available freely and most widely on the internet. Although outdated, Jackendoff's paper, "Why can't Computers use English?", argues that syntactic-grammatical knowledge plays a key role in the outputs of computers and computer-based reading machines. The current research has implemented some testings of his thought-provoking examples, in order to find out whether Google Translate can handle the same problems after two decades or so. As a result, it is argued that in the field of NLP, I-language in the sense of Chomsky (1986, 1995 etc) is real and the syntactic, grammatical, and categorial knowledge is essential in the faculty of language. Therefore, it is reassured in this paper that when it comes to human language, even the most advanced "machine" is still no match for human faculty of language, the syntactic-grammatical knowledge.
In this paper, We propose an anomaly detection model using deep neural network to automate the identification of outliers of the national air pollution measurement network data that is previously performed by experts. We generated training data by analyzing missing values and outliers of weather data provided by the Institute of Environmental Research and based on the BeatGAN model of the unsupervised learning method, we propose a new model by changing the kernel structure, adding the convolutional filter layer and the transposed convolutional filter layer to improve anomaly detection performance. In addition, by utilizing the generative features of the proposed model to implement and apply a retraining algorithm that generates new data and uses it for training, it was confirmed that the proposed model had the highest performance compared to the original BeatGAN models and other unsupervised learning model like Iforest and One Class SVM. Through this study, it was possible to suggest a method to improve the anomaly detection performance of proposed model while avoiding overfitting without additional cost in situations where training data are insufficient due to various factors such as sensor abnormalities and inspections in actual industrial sites.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.