• Title/Summary/Keyword: 인공지능-딥러닝

Search Result 699, Processing Time 0.035 seconds

A Review on Deep Learning Platform for Artificial Intelligence (인공지능 딥러링 학습 플랫폼에 관한 선행연구 고찰)

  • Jin, Chan-Yong;Shin, Seong-Yoon;Nam, Soo-Tai
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.169-170
    • /
    • 2019
  • Lately, as artificial intelligence becomes a source of global competitiveness, the government is strategically fostering artificial intelligence that is the base technology of future new industries such as autonomous vehicles, drones, and robots. Domestic artificial intelligence research and services have been launched mainly in Naver and Kakao, but their size and level are weak compared to overseas. Recently, deep learning has been conducted in recent years while recording innovative performance in various pattern recognition fields including speech recognition and image recognition. In addition, deep running has attracted great interest from industry since its inception, and global information technology companies such as Google, Microsoft, and Samsung have successfully applied deep learning technology to commercial products and are continuing research and development. Therefore, we will look at artificial intelligence which is attracting attention based on previous research.

  • PDF

Safety of Industrial Workers through the Development of Artificial Intelligence and A Study on Efficiency Improvement (인공지능의 발전을 통한 산업현장 근로자의 안전과 효율성 제고에 관한 연구)

  • Park, Gunuk
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2023.11a
    • /
    • pp.123-124
    • /
    • 2023
  • 현대 산업현장에서의 생산성과 경쟁력은 안전 및 작업 효율성과 직결되어 있다. 특히, 4차 산업혁명의 중심축인 인공지능(AI) 기술의 발전이 산업현장의 작업 환경과 절차를 혁신하는 데 중요한 역할을 하고 있음이 점차 명확해지고 있다. 이 연구는 인공지능의 기술적 발전과 산업현장의 작업 안전성 및 효율성 간의 관계에 초점을 맞추어, 어떻게 AI 기술의 도입과 활용이 산업현장의 미래를 형성하고 있는지를 탐구하였다.

  • PDF

AI Education Programs for Deep-Learning Concepts (딥러닝 개념을 위한 인공지능 교육 프로그램)

  • Ryu, Miyoung;Han, SeonKwan
    • Journal of The Korean Association of Information Education
    • /
    • v.23 no.6
    • /
    • pp.583-590
    • /
    • 2019
  • The purpose of this study is to develop an educational program for learning deep learning concepts for elementary school students. The model of education program was developed the deep-learning teaching method based on CT element-oriented teaching and learning model. The subject of the developed program is the artificial intelligence image recognition CNN algorithm, and we have developed 9 educational programs. We applied the program over two weeks to sixth graders. Expert validity analysis showed that the minimum CVR value was more than .56. The fitness level of learner level and the level of teacher guidance were less than .80, and the fitness of learning environment and media above .96 was high. The students' satisfaction analysis showed that students gave a positive evaluation of the average of 4.0 or higher on the understanding, benefit, interest, and learning materials of artificial intelligence learning.

Embedded artificial intelligence system development for action estimation on construction site (사용자 행동예측을 위한 임베디드 인공지능 엔진 및 시스템 기술 개발)

  • Song, Hyok;Choi, Inkyu;Ko, Minsoo;Yoo, Jisang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2021.06a
    • /
    • pp.226-227
    • /
    • 2021
  • 딥러닝을 활용한 영상 분석 기술은 GPU 하드웨어의 발전으로 인하여 소프트웨어 기반 처리 기술이 급격히 발전하였고 기존 패턴 분석 기술 대비 높은 정확도를 보여주고 있다. PC나 특정 하드웨어에서 동작하는 소프트웨어 기반 영상분석기술은 적용분야의 한계가 발생하였다. 신경망 기술을 하드웨어로 구현한 NPU(Network processing unit)의 개발로 고가의 플랫폼이 아닌 임베디드 플랫폼에서의 딥러닝 구현이 가능해졌다. 반면에 하드웨어에서 활용 가능한 네트워크가 제한적임으로 인하여 구현 가능한 딥러닝 모델의 크기, 메모리 등의 한계가 있으며 시시각각 변하는 딥러닝 기술에 기반한 최신모델 또는 고성능 모델을 구동하기에는 한계가 발생하였다. 이를 해결하기 위하여 본 연구에서는 Distillation 기법을 적용한 임베디드 시스템을 개발하고 이에 기반한 딥러닝 모델의 구현 및 상황에 따른 가변적 딥러닝 모델의 적용이 가능한 시스템을 구현하였다.

  • PDF

Real2Animation: A Study on the application of deepfake technology to support animation production (Real2Animation:애니메이션 제작지원을 위한 딥페이크 기술 활용 연구)

  • Dongju Shin;Bongjun Choi
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.3
    • /
    • pp.173-178
    • /
    • 2022
  • Recently, various computing technologies such as artificial intelligence, big data, and IoT are developing. In particular, artificial intelligence-based deepfake technology is being used in various fields such as the content and medical industry. Deepfake technology is a combination of deep learning and fake, and is a technology that synthesizes a person's face or body through deep learning, which is a core technology of AI, to imitate accents and voices. This paper uses deepfake technology to study the creation of virtual characters through the synthesis of animation models and real person photos. Through this, it is possible to minimize various cost losses occurring in the animation production process and support writers' work. In addition, as deepfake open source spreads on the Internet, many problems emerge, and crimes that abuse deepfake technology are prevalent. Through this study, we propose a new perspective on this technology by applying the deepfake technology to children's material rather than adult material.

A review of artificial intelligence based demand forecasting techniques (인공지능 기반 수요예측 기법의 리뷰)

  • Jeong, Hyerin;Lim, Changwon
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.6
    • /
    • pp.795-835
    • /
    • 2019
  • Big data has been generated in various fields. Many companies have now tried to make profits by building a system capable of analyzing big data based on artificial intelligence (AI) techniques. Integrating AI technology has made analyzing and utilizing vast amounts of data increasingly valuable. In particular, demand forecasting with maximum accuracy is critical to government and business management in various fields such as finance, procurement, production and marketing. In this case, it is important to apply an appropriate model that considers the demand pattern for each field. It is possible to analyze complex patterns of real data that can also be enlarged by a traditional time series model or regression model. However, choosing the right model among the various models is difficult without prior knowledge. Many studies based on AI techniques such as machine learning and deep learning have been proven to overcome these problems. In addition, demand forecasting through the analysis of stereotyped data and unstructured data of images or texts has also shown high accuracy. This paper introduces important areas where demand forecasts are relatively active as well as introduces machine learning and deep learning techniques that consider the characteristics of each field.

A Study on Deep learning Configuration Management System using Block chain (블록체인을 활용한 딥러닝 형상관리 시스템에 대한 연구)

  • Baeg, Su-Hwan;Lee, Jace;Shin, Young-Tae
    • Annual Conference of KIPS
    • /
    • 2021.05a
    • /
    • pp.234-237
    • /
    • 2021
  • 최근 인공지능에대한 관심과 COVID-19의 영향으로 인공지능을 적용하려는 연구가 계속되고 있다. 인공지능 학습 방식 중 딥러닝에서는 학습 결과에 따라 가중치를 두며 지속적인 학습을 수행한다. 이때 사용하는 가중치에 따라 학습 능력이 향상되게 되지만, 과다 학습으로 인한 퇴화 현상과 잘못된 결과 도출이 되는 경우가 발생한다. 이를 해결하기 위해 본 논문에서는 문제를 해결하기 위해 비연속적 PoW 합의방식을 사용한 블록체인에 가중치와 학습 결과를 지속적으로 보관하여 형상관리를 할 수 있는 시스템을 설계하였다.

Using the Deep Learning for the System Architecture of Image Prediction (엔터프라이즈 환경의 딥 러닝을 활용한 이미지 예측 시스템 아키텍처)

  • Cheon, Eun Young;Choi, Sung-Ja
    • Journal of Digital Convergence
    • /
    • v.17 no.10
    • /
    • pp.259-264
    • /
    • 2019
  • This paper proposes an image prediction system architecture for deep running in enterprise environment. Easily transform into an artificial intelligence platform for an enterprise environment, and allow sufficient deep-running services to be developed and modified even in Java-centric architectures to improve the shortcomings of Java-centric enterprise development because artificial intelligence platforms are concentrated in the pipeline. In addition, based on the proposed environment, we propose a more accurate prediction system in the deep running architecture environment that has been previously learned through image forecasting experiments. Experiments show 95.23% accuracy in the image example provided for deep running to be performed, and the proposed model shows 96.54% accuracy compared to other similar models.

Crowd counting based on Deep Learning (딥러닝 기반 인원 계수 방안)

  • Sim, Gun-Wu;Sohn, Jung-Mo;Kang, Gun-Ha
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.17-20
    • /
    • 2021
  • 본 연구는 인원 계수에 딥러닝 알고리즘을 적용한다. 인원 계수는 안전 관리 분야, 상업 분야에 적용될 수 있다. 예를 들어, 건물 내 화재 발생 시, 계수된 인원을 활용하여 인명 피해를 최소화할 수 있다. 다른 예로, 유동인구 데이터를 기반으로 상권을 분석하여 경제적 효율성을 극대화할 수 있다. 이처럼 인원 데이터의 중요성이 증가함에 따라 인원 계수 연구도 활발하다. 그 예로, 객체 탐지(Object Detection) 같은 딥러닝 기반 인원 계수, 센서 기반 인원 계수 등이 있다. 본 연구에선 딥러닝 알고리즘인 VGGNet을 사용하여 인원을 계수했다. 결과로 Mean Absolute Percentage Error(이하 MAPE)는 약 5.9%의 오차율을 보였다. 결과 확인 방법으로는 설명 가능한 인공지능(XAI) 알고리즘 중 하나인 Grad-CAM을 적용했다.

  • PDF

Research on Training and Implementation of Deep Learning Models for Web Page Analysis (웹페이지 분석을 위한 딥러닝 모델 학습과 구현에 관한 연구)

  • Jung Hwan Kim;Jae Won Cho;Jin San Kim;Han Jin Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.517-524
    • /
    • 2024
  • This study aims to train and implement a deep learning model for the fusion of website creation and artificial intelligence, in the era known as the AI revolution following the launch of the ChatGPT service. The deep learning model was trained using 3,000 collected web page images, processed based on a system of component and layout classification. This process was divided into three stages. First, prior research on AI models was reviewed to select the most appropriate algorithm for the model we intended to implement. Second, suitable web page and paragraph images were collected, categorized, and processed. Third, the deep learning model was trained, and a serving interface was integrated to verify the actual outcomes of the model. This implemented model will be used to detect multiple paragraphs on a web page, analyzing the number of lines, elements, and features in each paragraph, and deriving meaningful data based on the classification system. This process is expected to evolve, enabling more precise analysis of web pages. Furthermore, it is anticipated that the development of precise analysis techniques will lay the groundwork for research into AI's capability to automatically generate perfect web pages.