• Title/Summary/Keyword: 인공지능-딥러닝

Search Result 699, Processing Time 0.026 seconds

Efficient Implementation of Convolutional Neural Network Using CUDA (CUDA를 이용한 Convolutional Neural Network의 효율적인 구현)

  • Ki, Cheol-Min;Cho, Tai-Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.6
    • /
    • pp.1143-1148
    • /
    • 2017
  • Currently, Artificial Intelligence and Deep Learning are rising as hot social issues, and these technologies are applied to various fields. A good method among the various algorithms in Artificial Intelligence is Convolutional Neural Networks. Convolutional Neural Network is a form that adds Convolution Layers to Multi Layer Neural Network. If you use Convolutional Neural Networks for small amount of data, or if the structure of layers is not complicated, you don't have to pay attention to speed. But the learning should take long time when the size of the learning data is large and the structure of layers is complicated. In these cases, GPU-based parallel processing is frequently needed. In this paper, we developed Convolutional Neural Networks using CUDA, and show that its learning is faster and more efficient than learning using some other frameworks or programs.

Development and Speed Comparison of Convolutional Neural Network Using CUDA (CUDA를 이용한 Convolutional Neural Network의 구현 및 속도 비교)

  • Ki, Cheol-min;Cho, Tai-Hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.335-338
    • /
    • 2017
  • Currently Artificial Inteligence and Deep Learning are social issues, and These technologies are applied to various fields. A good method among the various algorithms in Artificial Inteligence is Convolutional Neural Network. Convolutional Neural Network is a form that adds convolution layers that extracts features by convolution operation on a general neural network method. If you use Convolutional Neural Network as small amount of data, or if the structure of layers is not complicated, you don't have to pay attention to speed. But the learning time is long as the size of the learning data is large and the structure of layers is complicated. So, GPU-based parallel processing is a lot. In this paper, we developed Convolutional Neural Network using CUDA and Learning speed is faster and more efficient than the method using the CPU.

  • PDF

A Study on Improving Performance of the Deep Neural Network Model for Relational Reasoning (관계 추론 심층 신경망 모델의 성능개선 연구)

  • Lee, Hyun-Ok;Lim, Heui-Seok
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.12
    • /
    • pp.485-496
    • /
    • 2018
  • So far, the deep learning, a field of artificial intelligence, has achieved remarkable results in solving problems from unstructured data. However, it is difficult to comprehensively judge situations like humans, and did not reach the level of intelligence that deduced their relations and predicted the next situation. Recently, deep neural networks show that artificial intelligence can possess powerful relational reasoning that is core intellectual ability of human being. In this paper, to analyze and observe the performance of Relation Networks (RN) among the neural networks for relational reasoning, two types of RN-based deep neural network models were constructed and compared with the baseline model. One is a visual question answering RN model using Sort-of-CLEVR and the other is a text-based question answering RN model using bAbI task. In order to maximize the performance of the RN-based model, various performance improvement experiments such as hyper parameters tuning have been proposed and performed. The effectiveness of the proposed performance improvement methods has been verified by applying to the visual QA RN model and the text-based QA RN model, and the new domain model using the dialogue-based LL dataset. As a result of the various experiments, it is found that the initial learning rate is a key factor in determining the performance of the model in both types of RN models. We have observed that the optimal initial learning rate setting found by the proposed random search method can improve the performance of the model up to 99.8%.

Design and Implementation of Sandcastle Play Guide Application using Artificial Intelligence and Augmented Reality (인공지능과 증강현실 기술을 이용한 모래성 놀이 가이드 애플리케이션 설계 및 구현)

  • Ryu, Jeeseung;Jang, Seungwoo;Mun, Yujeong;Lee, Jungjin
    • Journal of the Korea Computer Graphics Society
    • /
    • v.28 no.3
    • /
    • pp.79-89
    • /
    • 2022
  • With the popularity and the advanced graphics hardware technology of mobile devices, various mobile applications that help children with physical activities have been studied. This paper presents SandUp, a mobile application that guides the play of building sand castles using artificial intelligence and augmented reality(AR) technology. In the process of building the sandcastle, children can interactively explore the target virtual sandcastle through the smartphone display using AR technology. In addition, to help children complete the sandcastle, SandUp informs the sand shape and task required step by step and provides visual and auditory feedback while recognizing progress in real-time using the phone's camera and deep learning classification. We prototyped our SandUp app using Flutter and TensorFlow Lite. To evaluate the usability and effectiveness of the proposed SandUp, we conducted a questionnaire survey on 50 adults and a user study on 20 children aged 4~7 years. The survey results showed that SandUp effectively helps build the sandcastle with proper interactive guidance. Based on the results from the user study on children and feedback from their parents, we also derived usability issues that can be further improved and suggested future research directions.

Fake news detection via news elements (요소 정보 활용을 통한 가짜 뉴스 탐지)

  • Han, Sangdo;Lee, Gary Geunbae
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.588-590
    • /
    • 2020
  • 본 연구에서는 가짜 뉴스 탐지를 위한 데이터를 구축하고, 내용 기반의 탐지를 위한 시스템을 제안하였으며, 뉴스의 각 요소 정보가 탐지 성능에 미치는 영향을 확인하였다. 이는 기존의 내용 기반 가짜 뉴스 탐지 방법론들의 단점을 보완할 뿐 아니라 뉴스의 요소 정보가 진위 판별에 미치는 영향을 확인하기 위함이었다. 이를 위해 직접 구축한 뉴스 데이터의 제목과 본문을 따로 인코딩하여 판별하였고, 각 요소를 배제한 실험을 통해 뉴스 제목이 가장 중요한 요소 정보임을 확인하였다. 결과적으로 자극적인 제목으로 이목을 끌려는 가짜 뉴스의 속성을 정량적으로 확인할 수 있었다.

  • PDF

Korean Named Entity Recognition Using ELECTRA and Label Attention Network (ELECTRA와 Label Attention Network를 이용한 한국어 개체명 인식)

  • Kim, Hong-Jin;Oh, Shin-Hyeok;Kim, Hark-Soo
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.333-336
    • /
    • 2020
  • 개체명 인식이란 문장에서 인명, 지명, 기관명 등과 같이 고유한 의미를 갖는 단어를 찾아 개체명을 분류하는 작업이다. 딥러닝을 활용한 연구가 수행되면서 개체명 인식에 RNN(Recurrent Neural Network)과 CRF(Condition Random Fields)를 결합한 연구가 좋은 성능을 보이고 있다. 그러나 CRF는 시간 복잡도가 분류해야 하는 클래스(Class) 개수의 제곱에 비례하고, 최근 RNN과 Softmax 모델보다 낮은 성능을 보이는 연구도 있었다. 본 논문에서는 CRF의 단점을 보완한 LAN(Label Attention Network)와 사전 학습 언어 모델인 음절 단위 ELECTRA를 활용하는 개체명 인식 모델을 제안한다.

  • PDF

Generalized wheat head Detection Model Based on CutMix Algorithm (CutMix 알고리즘 기반의 일반화된 밀 머리 검출 모델)

  • Juwon Yeo;Wonjun Park
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.73-75
    • /
    • 2024
  • 본 논문에서는 밀 수확량을 증가시키기 위한 일반화된 검출 모델을 제안한다. 일반화 성능을 높이기 위해 CutMix 알고리즘으로 데이터를 증식시켰고, 라벨링 되지 않은 데이터를 최대한 활용하기 위해 Fast R-CNN 기반 Pseudo labeling을 사용하였다. 학습의 정확성과 효율성을 높이기 위해 사전에 훈련된 EfficientDet 모델로 학습하였으며, OOF를 이용하여 검증하였다. 최신 객체 검출 모델과 IoU(Intersection over Union)를 이용한 성능 평가 결과, 제안된 모델이 가장 높은 성능을 보이는 것을 확인하였다.

  • PDF

Similarity Analysis Between SAR Target Images Based on Siamese Network (Siamese 네트워크 기반 SAR 표적영상 간 유사도 분석)

  • Park, Ji-Hoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.462-475
    • /
    • 2022
  • Different from the field of electro-optical(EO) image analysis, there has been less interest in similarity metrics between synthetic aperture radar(SAR) target images. A reliable and objective similarity analysis for SAR target images is expected to enable the verification of the SAR measurement process or provide the guidelines of target CAD modeling that can be used for simulating realistic SAR target images. For this purpose, this paper presents a similarity analysis method based on the siamese network that quantifies the subjective assessment through the distance learning of similar and dissimilar SAR target image pairs. The proposed method is applied to MSTAR SAR target images of slightly different depression angles and the resultant metrics are compared and analyzed with qualitative evaluation. Since the image similarity is somewhat related to recognition performance, the capacity of the proposed method for target recognition is further checked experimentally with the confusion matrix.

Structure Recognition Method of Invoice Document Image for Document Processing Automation (문서 처리 자동화를 위한 인보이스 이미지의 구조 인식 방법)

  • Dong-seok Lee;Soon-kak Kwon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.2
    • /
    • pp.11-19
    • /
    • 2023
  • In this paper, we propose the methods of invoice document structure recognition and of making a spreadsheet electronic document. The texts and block location information of word blocks are recognized by an optical character recognition engine through deep learning. The word blocks on the same row and same column are found through their coordinates. The document area is divided through arrangement information of the word blocks. The character recognition result is inputted in the spreadsheet based on the document structure. In simulation result, the item placement through the proposed method shows an average accuracy of 92.30%.

Development of ResNet based Crop Growth Stage Estimation Model (ResNet 기반 작물 생육단계 추정 모델 개발)

  • Park, Jun;Kim, June-Yeong;Park, Sung-Wook;Jung, Se-Hoon;Sim, Chun-Bo
    • Smart Media Journal
    • /
    • v.11 no.2
    • /
    • pp.53-62
    • /
    • 2022
  • Due to the accelerated global warming phenomenon after industrialization, the frequency of changes in the existing environment and abnormal climate is increasing. Agriculture is an industry that is very sensitive to climate change, and global warming causes problems such as reducing crop yields and changing growing regions. In addition, environmental changes make the growth period of crops irregular, making it difficult for even experienced farmers to easily estimate the growth stage of crops, thereby causing various problems. Therefore, in this paper, we propose a CNN model for estimating the growth stage of crops. The proposed model was a model that modified the pooling layer of ResNet, and confirmed the accuracy of higher performance than the growth stage estimation of the ResNet and DenseNet models.