• Title/Summary/Keyword: 인공지능-딥러닝

Search Result 699, Processing Time 0.029 seconds

Deep Learning Architectures and Applications (딥러닝의 모형과 응용사례)

  • Ahn, SungMahn
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.2
    • /
    • pp.127-142
    • /
    • 2016
  • Deep learning model is a kind of neural networks that allows multiple hidden layers. There are various deep learning architectures such as convolutional neural networks, deep belief networks and recurrent neural networks. Those have been applied to fields like computer vision, automatic speech recognition, natural language processing, audio recognition and bioinformatics where they have been shown to produce state-of-the-art results on various tasks. Among those architectures, convolutional neural networks and recurrent neural networks are classified as the supervised learning model. And in recent years, those supervised learning models have gained more popularity than unsupervised learning models such as deep belief networks, because supervised learning models have shown fashionable applications in such fields mentioned above. Deep learning models can be trained with backpropagation algorithm. Backpropagation is an abbreviation for "backward propagation of errors" and a common method of training artificial neural networks used in conjunction with an optimization method such as gradient descent. The method calculates the gradient of an error function with respect to all the weights in the network. The gradient is fed to the optimization method which in turn uses it to update the weights, in an attempt to minimize the error function. Convolutional neural networks use a special architecture which is particularly well-adapted to classify images. Using this architecture makes convolutional networks fast to train. This, in turn, helps us train deep, muti-layer networks, which are very good at classifying images. These days, deep convolutional networks are used in most neural networks for image recognition. Convolutional neural networks use three basic ideas: local receptive fields, shared weights, and pooling. By local receptive fields, we mean that each neuron in the first(or any) hidden layer will be connected to a small region of the input(or previous layer's) neurons. Shared weights mean that we're going to use the same weights and bias for each of the local receptive field. This means that all the neurons in the hidden layer detect exactly the same feature, just at different locations in the input image. In addition to the convolutional layers just described, convolutional neural networks also contain pooling layers. Pooling layers are usually used immediately after convolutional layers. What the pooling layers do is to simplify the information in the output from the convolutional layer. Recent convolutional network architectures have 10 to 20 hidden layers and billions of connections between units. Training deep learning networks has taken weeks several years ago, but thanks to progress in GPU and algorithm enhancement, training time has reduced to several hours. Neural networks with time-varying behavior are known as recurrent neural networks or RNNs. A recurrent neural network is a class of artificial neural network where connections between units form a directed cycle. This creates an internal state of the network which allows it to exhibit dynamic temporal behavior. Unlike feedforward neural networks, RNNs can use their internal memory to process arbitrary sequences of inputs. Early RNN models turned out to be very difficult to train, harder even than deep feedforward networks. The reason is the unstable gradient problem such as vanishing gradient and exploding gradient. The gradient can get smaller and smaller as it is propagated back through layers. This makes learning in early layers extremely slow. The problem actually gets worse in RNNs, since gradients aren't just propagated backward through layers, they're propagated backward through time. If the network runs for a long time, that can make the gradient extremely unstable and hard to learn from. It has been possible to incorporate an idea known as long short-term memory units (LSTMs) into RNNs. LSTMs make it much easier to get good results when training RNNs, and many recent papers make use of LSTMs or related ideas.

Correlation Analysis of Dataset Size and Accuracy of the CNN-based Malware Detection Algorithm (CNN Mobile Net 기반 악성코드 탐지 모델에서의 학습 데이터 크기와 검출 정확도의 상관관계 분석)

  • Choi, Dong Jun;Lee, Jae Woo
    • Convergence Security Journal
    • /
    • v.20 no.3
    • /
    • pp.53-60
    • /
    • 2020
  • At the present stage of the fourth industrial revolution, machine learning and artificial intelligence technologies are rapidly developing, and there is a movement to apply machine learning technology in the security field. Malicious code, including new and transformed, generates an average of 390,000 a day worldwide. Statistics show that security companies ignore or miss 31 percent of alarms. As many malicious codes are generated, it is becoming difficult for humans to detect all malicious codes. As a result, research on the detection of malware and network intrusion events through machine learning is being actively conducted in academia and industry. In international conferences and journals, research on security data analysis using deep learning, a field of machine learning, is presented. have. However, these papers focus on detection accuracy and modify several parameters to improve detection accuracy but do not consider the ratio of dataset. Therefore, this paper aims to reduce the cost and resources of many machine learning research by finding the ratio of dataset that can derive the highest detection accuracy in CNN Mobile net-based malware detection model.

Performance Analysis of Speech Recognition Model based on Neuromorphic Architecture of Speech Data Preprocessing Technique (음성 데이터 전처리 기법에 따른 뉴로모픽 아키텍처 기반 음성 인식 모델의 성능 분석)

  • Cho, Jinsung;Kim, Bongjae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.3
    • /
    • pp.69-74
    • /
    • 2022
  • SNN (Spiking Neural Network) operating in neuromorphic architecture was created by mimicking human neural networks. Neuromorphic computing based on neuromorphic architecture requires relatively lower power than typical deep learning techniques based on GPUs. For this reason, research to support various artificial intelligence models using neuromorphic architecture is actively taking place. This paper conducted a performance analysis of the speech recognition model based on neuromorphic architecture according to the speech data preprocessing technique. As a result of the experiment, it showed up to 84% of speech recognition accuracy performance when preprocessing speech data using the Fourier transform. Therefore, it was confirmed that the speech recognition service based on the neuromorphic architecture can be effectively utilized.

Research cases and considerations in the field of hydrosystems using ChatGPT (ChatGPT를 활용한 수자원시스템분야 문제해결사례 소개 및 고찰)

  • Do Guen Yoo;Chan Wook Lee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.98-98
    • /
    • 2023
  • ChatGPT(Chat과 Generative Pre-trained Transformer의 합성어)는 사용자와 주고받는 대화의 과정을 통해 질문에 답하도록 설계된 대형언어모델로, 지도학습과 강화학습을 모두 사용하여 세밀하게 조정된 인공지능 챗봇이다. ChatGPT는 주고받은 대화와 대화의 문맥을 기억할 수 있으며, 보고서나 실제로 작동하는 파이썬 코드를 비롯한 인간과 유사하게 상세하고 논리적인 글을 만들어 낼 수 있다고 알려져있다. 본 연구에서는 수자원시스템분야의 문제해결에 있어 ChatGPT의 적용가능성을 사례기반으로 확인하고, ChatGPT의 올바른 활용을 위해 필요한 사항에 대해 고찰하였다. 수자원시스템분야의 대표적인 연구주제인 상수관망시스템의 누수인지와 수리해석을 통한 문제해결에 ChatGPT를 활용하였다. 즉, 딥러닝 기반의 데이터분석을 활용한 누수인지와 오픈소스기반의 수리해석 모델을 활용한 관망시스템 적정 분석을 목표로 ChatGPT와 대화를 진행하고, ChatGPT에 의해 제안된 코드를 구동하여 결과를 분석하였다. ChatGPT가 제시한 코드의 구동결과를 사전에 연구자가 직접 구현한 코드구동 결과와 비교분석하였다. 분석결과 ChatGPT가 제시한 코드가 보다 더 간결할 수 있으며, 상대적으로 경쟁력 있는 결과를 도출하는 것을 확인하였다. 다만, 상대적으로 간결한 코드와 우수한 구동결과를 획득하기 위해서는 해당 도메인의 전문적 지식을 바탕으로 적절한 다수의 질문을 해야 하며, ChatGPT에 의해 작성된 코드의 의미를 명확히 해석하거나 비판적 분석을 하기 위해서는 전문가지식이 반드시 필요함을 알 수 있었다.

  • PDF

SRLev-BIH: An Evaluation Metric for Korean Generative Commonsense Reasoning (SRLev-BIH: 한국어 일반 상식 추론 및 생성 능력 평가 지표)

  • Jaehyung Seo;Yoonna Jang;Jaewook Lee;Hyeonseok Moon;Sugyeong Eo;Chanjun Park;Aram So;Heuiseok Lim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.176-181
    • /
    • 2022
  • 일반 상식 추론 능력은 가장 사람다운 능력 중 하나로써, 인공지능 모델이 쉽게 모사하기 어려운 영역이다. 딥러닝 기반의 언어 모델은 여전히 일반 상식에 기반한 추론을 필요로 하는 분야에서 부족한 성능을 보인다. 특히, 한국어에서는 일반 상식 추론과 관련한 연구가 상당히 부족한 상황이다. 이러한 문제 완화를 위해 최근 생성 기반의 일반 상식 추론을 위한 한국어 데이터셋인 Korean CommonGen [1]이 발표되었다. 그러나, 해당 데이터셋의 평가 지표는 어휘 단계의 유사성과 중첩에 의존하는 한계를 지니며, 생성한 문장이 일반 상식에 부합한 문장인지 측정하기 어렵다. 따라서 본 논문은 한국어 일반 상식 추론 및 생성 능력에 대한 평가 지표를 개선하기 위해 문장 성분의 의미역과 자모의 형태 변화를 바탕으로 생성 결과를 평가하는 SRLev, 사람의 평가 결과를 학습한 BIH, 그리고 두 평가 지표의 장점을 결합한 SRLev-BIH를 제안한다.

  • PDF

Smart Target Detection System Using Artificial Intelligence (인공지능을 이용한 스마트 표적탐지 시스템)

  • Lee, Sung-nam
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.538-540
    • /
    • 2021
  • In this paper, we proposed a smart target detection system that detects and recognizes a designated target to provide relative motion information when performing a target detection mission of a drone. The proposed system focused on developing an algorithm that can secure adequate accuracy (i.e. mAP, IoU) and high real-time at the same time. The proposed system showed an accuracy of close to 1.0 after 100k learning of the Google Inception V2 deep learning model, and the inference speed was about 60-80[Hz] when using a high-performance laptop based on the real-time performance Nvidia GTX 2070 Max-Q. The proposed smart target detection system will be operated like a drone and will be helpful in successfully performing surveillance and reconnaissance missions by automatically recognizing the target using computer image processing and following the target.

  • PDF

Model Training and Data Augmentation Schemes For the High-level Machine Reading Comprehension (고차원 기계 독해를 위한 모델 훈련 및 데이터 증강 방안)

  • Lee, Jeongwoo;Moon, Hyeonseok;Park, Chanjun;Lim, Heuiseok
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.47-52
    • /
    • 2021
  • 최근 지문을 바탕으로 답을 추론하는 연구들이 많이 이루어지고 있으며, 대표적으로 기계 독해 연구가 존재하고 관련 데이터 셋 또한 여러 가지가 공개되어 있다. 그러나 한국의 대학수학능력시험 국어 영역과 같은 복잡한 구조의 문제에 대한 고차원적인 문제 해결 능력을 요구하는 데이터 셋은 거의 존재하지 않는다. 이로 인해 고차원적인 독해 문제를 해결하기 위한 연구가 활발히 이루어지고 있지 않으며, 인공지능 모델의 독해 능력에 대한 성능 향상이 제한적이다. 기존의 입력 구조가 단조로운 독해 문제에 대한 모델로는 복잡한 구조의 독해 문제에 적용하기가 쉽지 않으며, 이를 해결하기 위해서는 새로운 모델 훈련 방법이 필요하다. 이에 복잡한 구조의 고차원적인 독해 문제에도 대응이 가능하도록 하는 모델 훈련 방법을 제안하고자 한다. 더불어 3가지의 데이터 증강 기법을 제안함으로써 고차원 독해 문제 데이터 셋의 부족 문제 또한 해소하고자 한다.

  • PDF

SHAP-based Explainable Photovoltaic Power Forecasting Scheme Using LSTM (LSTM을 사용한 SHAP 기반의 설명 가능한 태양광 발전량 예측 기법)

  • Park, Sungwoo;Noh, Yoona;Jung, Seungmin;Hwang, Eenjun
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.845-848
    • /
    • 2021
  • 최근 화석연료의 급격한 사용에 따른 자원고갈이나 환경오염과 같은 문제들이 심각해짐에 따라 화석연료를 대체할 수 있는 신재생에너지에 대한 관심이 높아지고 있다. 태양광 에너지는 다른 에너지원에 비해 고갈의 우려가 없고, 부지 선정의 제약이 크지 않아 수요가 증가하고 있다. 태양광 발전 시스템에서 생산된 전력을 효과적으로 사용하기 위해서는 태양광 발전량에 대한 정확한 예측 모델이 필요하다. 이를 위한 다양한 딥러닝 기반의 예측 모델들이 제안되었지만, 이러한 모델들은 모델 내부에서 일어나는 의사결정 과정을 들여다보기가 어렵다. 의사결정에 대한 설명이 없다면 예측 모델의 결과를 완전히 신뢰하고 사용하는 데 제약이 따른다. 이런 문제를 위해서 최근 주목을 받는 설명 가능한 인공지능 기술을 사용한다면, 예측 모델의 결과 도출에 대한 해석을 제공할 수 있어 모델의 신뢰성을 확보할 수 있을 뿐만 아니라 모델의 성능 향상을 기대할 수도 있다. 이에 본 논문에서는 Long Short-Term Memory(LSTM)을 사용하여 모델을 구성하고, 모델에서 어떻게 예측값이 도출되었는지를 SHapley Additive exPlanation(SHAP)을 통하여 설명하는 태양광 발전량 예측 기법을 제안한다.

Deep Learning Model for Metaverse Environment to Detect Metaphor (메타버스 환경에서 음성 혐오 발언 탐지를 위한 딥러닝 모델 설계)

  • Song, Jin-Su;Karabaeva, Dilnoza;Son, Seung-Woo;Shin, Young-Tea
    • Annual Conference of KIPS
    • /
    • 2022.05a
    • /
    • pp.621-623
    • /
    • 2022
  • 최근 코로나19로 인해 비대면으로 소통할 수 있는 플랫폼에 대한 관심이 증가하고 있으며, 가상 세계의 개념을 도입한 메타버스 플랫폼이 MZ세대의 새로운 SNS로 떠오르고 있다. 아바타를 통해 상호 교류가 가능한 메타버스는 텍스트 기반의 소통뿐만 아니라 음성과 동작 시선 등을 활용하여 변화된 의사소통 방식을 사용한다. 음성을 활용한 소통이 증가함에 따라 다른 이용자에게 불쾌감을 주는 혐오 발언에 대한 신고가 증가하고 있다. 그러나 기존 혐오 발언 탐지 시스템은 텍스트를 기반으로 하여 사전에 정의된 혐오 키워드만 특수문자로 대체하는 방식을 사용하기 때문에 음성 혐오 발언에 대해서는 탐지하지 못한다. 이에 본 논문에서는 인공지능을 활용한 음성 혐오 표현 탐지 시스템을 제안한다. 제안하는 시스템은 음성 데이터의 파형을 통해 은유적 혐오 표현과 혐오 발언에 대한 감정적 특징을 추출하고 음성 데이터를 텍스트 데이터로 변환하여 혐오 문장을 탐지한 결과와 결합한다. 향후, 제안하는 시스템의 현실적인 검증을 위해 시스템 구축을 통한 성능평가가 필요하다.

Anomaly Detection using VGGNet for safety inspection of OPGW (광섬유 복합가공 지선(OPGW) 설비 안전점검을 위한 VGGNet 기반의 이상 탐지)

  • Kang, Gun-Ha;Sohn, Jung-Mo;Son, Do-Hyun;Han, Jeong-Ho
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.3-5
    • /
    • 2022
  • 본 연구는 VGGNet을 사용하여 광섬유 복합가공 지선 설비의 양/불량 판별을 수행한다. 광섬유 복합가공 지선이란, 전력선의 보호 및 전력 시설 간 통신을 담당하는 중요 설비로 고장 발생 전, 결함의 조기 발견 및 유지 관리가 중요하다. 현재 한국전력공사에서는 드론에서 촬영된 영상을 점검원이 이상 여부를 점검하는 방식이 주로 사용되고 있으나 이는 점검원의 숙련도, 경험에 따른 정확성 및 비용과 시간 측면에서 한계를 지니고 있다. 본 연구는 드론에서 촬영된 영상으로 VGGNet 기반의 양/불량 판정을 수행했다. 그 결과, 정확도 약 95.15%, 정밀도 약 96%, 재현율 약 95%, f1 score 약 95%의 성능을 확인하였다. 결과 확인 방법으로는 설명 가능한 인공지능(XAI) 알고리즘 중 하나인 Grad-CAM을 적용하였다. 이러한 광섬유 복합가공 지선 설비의 양/불량 판별은 점검원의 단순 작업에 대한 비용 및 점검 시간을 줄이며, 부가가치가 높은 업무에 집중할 수 있게 해준다. 또한, 고장 결함 발견에 있어서 객관적인 점검을 수행하기 때문에 일정한 점검 품질을 유지한다는 점에서 적용 가치가 있다.

  • PDF