• Title/Summary/Keyword: 인공지능-딥러닝

Search Result 699, Processing Time 0.037 seconds

Building-up and Feasibility Study of Image Dataset of Field Construction Equipments for AI Training (인공지능 학습용 토공 건설장비 영상 데이터셋 구축 및 타당성 검토)

  • Na, Jong Ho;Shin, Hyu Soun;Lee, Jae Kang;Yun, Il Dong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.99-107
    • /
    • 2023
  • Recently, the rate of death and safety accidents at construction sites is the highest among all kinds of industries. In order to apply artificial intelligence technology to construction sites, it is essential to secure a dataset which can be used as a basic training data. In this paper, a number of image data were collected through actual construction site, for which major construction equipment objects mainly operated in civil engineering sites were defined. The optimal training dataset construction was completed by annotation process of about 90,000 image dataset. Reliability of the dataset was verified with the mAP of over 90 % in use of YOLO, a representative model in the field of object detection. The construction equipment training dataset built in this study has been released which is currently available on the public data portal of the Ministry of Public Administration and Security. This dataset is expected to be freely used for any application of object detection technology on construction sites especially in the field of construction safety in the future.

Comparative Study of AI Models for Reliability Function Estimation in NPP Digital I&C System Failure Prediction (원전 디지털 I&C 계통 고장예측을 위한 신뢰도 함수 추정 인공지능 모델 비교연구)

  • DaeYoung Lee;JeongHun Lee;SeungHyeok Yang
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.6
    • /
    • pp.1-10
    • /
    • 2023
  • The nuclear power plant(NPP)'s Instrumentation and Control(I&C) system periodically conducts integrity checks for the maintenance of self-diagnostic function during normal operation. Additionally, it performs functionality and performance checks during planned preventive maintenance periods. However, there is a need for technological development to diagnose failures and prevent accidents in advance. In this paper, we studied methods for estimating the reliability function by utilizing environmental data and self-diagnostic data of the I&C equipment. To obtain failure data, we assumed probability distributions for component features of the I&C equipment and generated virtual failure data. Using this failure data, we estimated the reliability function using representative artificial intelligence(AI) models used in survival analysis(DeepSurve, DeepHit). And we also estimated the reliability function through the Cox regression model of the traditional semi-parametric method. We confirmed the feasibility through the residual lifetime calculations based on environmental and diagnostic data.

A Study on Mechanism of Intelligent Cyber Attack Path Analysis (지능형 사이버 공격 경로 분석 방법에 관한 연구)

  • Kim, Nam-Uk;Lee, Dong-Gyu;Eom, Jung-Ho
    • Convergence Security Journal
    • /
    • v.21 no.1
    • /
    • pp.93-100
    • /
    • 2021
  • Damage caused by intelligent cyber attacks not only disrupts system operations and leaks information, but also entails massive economic damage. Recently, cyber attacks have a distinct goal and use advanced attack tools and techniques to accurately infiltrate the target. In order to minimize the damage caused by such an intelligent cyber attack, it is necessary to block the cyber attack at the beginning or during the attack to prevent it from invading the target's core system. Recently, technologies for predicting cyber attack paths and analyzing risk level of cyber attack using big data or artificial intelligence technologies are being studied. In this paper, a cyber attack path analysis method using attack tree and RFI is proposed as a basic algorithm for the development of an automated cyber attack path prediction system. The attack path is visualized using the attack tree, and the priority of the path that can move to the next step is determined using the RFI technique in each attack step. Based on the proposed mechanism, it can contribute to the development of an automated cyber attack path prediction system using big data and deep learning technology.

Implementation of Smart Shopping Cart using Object Detection Method based on Deep Learning (딥러닝 객체 탐지 기술을 사용한 스마트 쇼핑카트의 구현)

  • Oh, Jin-Seon;Chun, In-Gook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.262-269
    • /
    • 2020
  • Recently, many attempts have been made to reduce the time required for payment in various shopping environments. In addition, for the Fourth Industrial Revolution era, artificial intelligence is advancing, and Internet of Things (IoT) devices are becoming more compact and cheaper. So, by integrating these two technologies, access to building an unmanned environment to save people time has become easier. In this paper, we propose a smart shopping cart system based on low-cost IoT equipment and deep-learning object-detection technology. The proposed smart cart system consists of a camera for real-time product detection, an ultrasonic sensor that acts as a trigger, a weight sensor to determine whether a product is put into or taken out of the shopping cart, an application for smartphones that provides a user interface for a virtual shopping cart, and a deep learning server where learned product data are stored. Communication between each module is through Transmission Control Protocol/Internet Protocol, a Hypertext Transmission Protocol network, a You Only Look Once darknet library, and an object detection system used by the server to recognize products. The user can check a list of items put into the smart cart via the smartphone app, and can automatically pay for them. The smart cart system proposed in this paper can be applied to unmanned stores with high cost-effectiveness.

Comparative Analysis of CNN Deep Learning Model Performance Based on Quantification Application for High-Speed Marine Object Classification (고속 해상 객체 분류를 위한 양자화 적용 기반 CNN 딥러닝 모델 성능 비교 분석)

  • Lee, Seong-Ju;Lee, Hyo-Chan;Song, Hyun-Hak;Jeon, Ho-Seok;Im, Tae-ho
    • Journal of Internet Computing and Services
    • /
    • v.22 no.2
    • /
    • pp.59-68
    • /
    • 2021
  • As artificial intelligence(AI) technologies, which have made rapid growth recently, began to be applied to the marine environment such as ships, there have been active researches on the application of CNN-based models specialized for digital videos. In E-Navigation service, which is combined with various technologies to detect floating objects of clash risk to reduce human errors and prevent fires inside ships, real-time processing is of huge importance. More functions added, however, mean a need for high-performance processes, which raises prices and poses a cost burden on shipowners. This study thus set out to propose a method capable of processing information at a high rate while maintaining the accuracy by applying Quantization techniques of a deep learning model. First, videos were pre-processed fit for the detection of floating matters in the sea to ensure the efficient transmission of video data to the deep learning entry. Secondly, the quantization technique, one of lightweight techniques for a deep learning model, was applied to reduce the usage rate of memory and increase the processing speed. Finally, the proposed deep learning model to which video pre-processing and quantization were applied was applied to various embedded boards to measure its accuracy and processing speed and test its performance. The proposed method was able to reduce the usage of memory capacity four times and improve the processing speed about four to five times while maintaining the old accuracy of recognition.

A Study on the Design and Implementation of Multi-Disaster Drone System Using Deep Learning-Based Object Recognition and Optimal Path Planning (딥러닝 기반 객체 인식과 최적 경로 탐색을 통한 멀티 재난 드론 시스템 설계 및 구현에 대한 연구)

  • Kim, Jin-Hyeok;Lee, Tae-Hui;Han, Yamin;Byun, Heejung
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.4
    • /
    • pp.117-122
    • /
    • 2021
  • In recent years, human damage and loss of money due to various disasters such as typhoons, earthquakes, forest fires, landslides, and wars are steadily occurring, and a lot of manpower and funds are required to prevent and recover them. In this paper, we designed and developed a disaster drone system based on artificial intelligence in order to monitor these various disaster situations in advance and to quickly recognize and respond to disaster occurrence. In this study, multiple disaster drones are used in areas where it is difficult for humans to monitor, and each drone performs an efficient search with an optimal path by applying a deep learning-based optimal path algorithm. In addition, in order to solve the problem of insufficient battery capacity, which is a fundamental problem of drones, the optimal route of each drone is determined using Ant Colony Optimization (ACO) technology. In order to implement the proposed system, it was applied to a forest fire situation among various disaster situations, and a forest fire map was created based on the transmitted data, and a forest fire map was visually shown to the fire fighters dispatched by a drone equipped with a beam projector. In the proposed system, multiple drones can detect a disaster situation in a short time by simultaneously performing optimal path search and object recognition. Based on this research, it can be used to build disaster drone infrastructure, search for victims (sea, mountain, jungle), self-extinguishing fire using drones, and security drones.

Remote Multi-control Smart Farm with Deep Learning Growth Diagnosis Function

  • Kim, Mi-jin;Kim, Ji-ho;Lee, Dong-hyeon;Han, Jung-hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.9
    • /
    • pp.49-57
    • /
    • 2022
  • Currently, the problem of food shortage is emerging in our society due to climate problems and an increase population in the world. As a solution to this problem, we propose a multi-remote control smart farm that combines artificial intelligence (AI) and information and communication technology (ICT) technologies. The proposed smart farm integrates ICT technology to remotely control and manage crops without restrictions in space and time, and to multi-control the growing environment of crops. In addition, using Arduino and deep-learning technology, a smart farm capable of multiple control through a smart-phone application (APP) was proposed, and Ai technology with various data securing and diagnosis functions while observing crop growth in real-time was included. Various sensors in the smart farm are controlled by using the Arduino, and the data values of the sensors are stored in the built database, so that the user can check the stored data with the APP. For multiple control for multiple crops, each LED, COOLING FAN, and WATER PUMP for two or more growing environments were applied so that the user could control it conveniently. And by implementing an APP that diagnoses the growth stage through the Tensor-Flow framework using deep-learning technology, we developed an application that helps users to easily diagnose the growth status of the current crop.

Performance Assessment of Machine Learning and Deep Learning in Regional Name Identification and Classification in Scientific Documents (머신러닝을 이용한 과학기술 문헌에서의 지역명 식별과 분류방법에 대한 성능 평가)

  • Jung-Woo Lee;Oh-Jin Kwon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.2
    • /
    • pp.389-396
    • /
    • 2024
  • Generative AI has recently been utilized across all fields, achieving expert-level advancements in deep data analysis. However, identifying regional names in scientific literature remains a challenge due to insufficient training data and limited AI application. This study developed a standardized dataset for effectively classifying regional names using address data from Korean institution-affiliated authors listed in the Web of Science. It tested and evaluated the applicability of machine learning and deep learning models in real-world problems. The BERT model showed superior performance, with a precision of 98.41%, recall of 98.2%, and F1 score of 98.31% for metropolitan areas, and a precision of 91.79%, recall of 88.32%, and F1 score of 89.54% for city classifications. These findings offer a valuable data foundation for future research on regional R&D status, researcher mobility, collaboration status, and so on.

Generative Adversarial Network based Mobility Prediction Model in Wireless Network (무선 네트워크 환경에서의 생성적 적대 신경망 기반 이동성 예측 모델)

  • Jang, Boyun;Raza, Syed Muhammad;Kim, Moonseong;Choo, Hyunseung
    • Annual Conference of KIPS
    • /
    • 2020.11a
    • /
    • pp.168-171
    • /
    • 2020
  • 초저지연성을 요구하는 5G 네트워크 환경에서 기기의 핸드오버를 능동적으로 조절하는 시스템의 중요성이 대두되고 있으며, 특히 핸드오버 시 기기의 이동성을 예측하는 것은 필수적이다. 딥러닝 모델의 일종인 생성적 적대 신경망은 두 신경망 사이의 경쟁 구도를 이용하여 두 신경망의 성능을 모두 높이는 목적으로 사용된다. 본 논문에서는 주로 데이터 생성 모델로 사용되는 생성적 적대 신경망을 이용하여 무선 네트워크 환경에서 기기의 이동성을 예측하는 시스템을 개발하였다. 이를 통해 실제 모바일 네트워크 환경에 적용되었을 경우 핸드오버 속도를 높이도록 한다.

An Evaluation of Inference Acceleration for Drone-based Real-time Object Detection (드론 기반 실시간 객체 식별을 위한 추론 가속화 평가)

  • Kwon, Seung-Sang;Moon, Yong-Hyuk
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.408-410
    • /
    • 2022
  • 최근 데이터 획득 위치에 가장 근접하고, 저 수준의 계산력을 제공하는 엣지 기기를 중심으로 직접 딥러닝 추론을 수행하고자 하는 요구가 증가하고 있다. 본 논문에서는 드론에서 촬영한 교통 영상 데이터를 기반으로, 다수의 차량 종류 및 보행자를 식별하는 모델을 Jetson Nano 에 탑재하여 기본 성능을 측정한다. 더불어, 자원제약형 기기 환경에서 TensorRT 와 Deepstream 을 활용하여 객체 식별 모델의 연산 경량화 및 추론 가속화 성능을 극대화하기 위한 구현 및 실험을 수행하여 Anchor-based 및 Anchor-free 객체 식별 모델의 정확도와 실시간 대응력을 평가하고 논의한다.