• Title/Summary/Keyword: 인공지능-딥러닝

Search Result 699, Processing Time 0.026 seconds

An AI Service to support communication and language learning for people with developmental disability (발달장애인을 위한 커뮤니케이션과 언어 학습 증진을 위한 인공지능 서비스)

  • Park, Chan-Jun;Kim, Yang-Hee;Jang, Yoonna;Umadevi, G.R;Lim, Heui-Seok
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.6
    • /
    • pp.51-57
    • /
    • 2020
  • Children with language developmental disabilities often struggle through their lives from a lot of challenges in everyday life and social activities. They're often easily deprived of the opportunity to engage in social activities, because they find difficulty in understanding or using language, a core means of communication. With regard to this issue, AAC(Augmentative and Alternative Communication) can be an effective communication tool for children who are suffering from language disabilities. In this paper, we propose a deep learning-based AI service to make full use of the pictogram as an AAC tool for children with language developmental disabilities to improve not only the ability to interact with others but the capacity to understand language. Using this service, we strive to help these children to more effectively communicate their intention or desire and enhance the quality of life.

The study of blood glucose level prediction model using ballistocardiogram and artificial intelligence (심탄도와 인공지능을 이용한 혈당수치 예측모델 연구)

  • Choi, Sang-Ki;Park, Cheol-Gu
    • Journal of Digital Convergence
    • /
    • v.19 no.9
    • /
    • pp.257-269
    • /
    • 2021
  • The purpose of this study is to collect biosignal data in a non-invasive and non-restrictive manner using a BCG (Ballistocardiogram) sensor, and utilize artificial intelligence machine learning algorithms in ICT and high-performance computing environments. And it is to present and study a method for developing and validating a data-based blood glucose prediction model. In the blood glucose level prediction model, the input nodes in the MLP architecture are data of heart rate, respiration rate, stroke volume, heart rate variability, SDNN, RMSSD, PNN50, age, and gender, and the hidden layer 7 were used. As a result of the experiment, the average MSE, MAE, and RMSE values of the learning data tested 5 times were 0.5226, 0.6328, and 0.7692, respectively, and the average values of the validation data were 0.5408, 0.6776, and 0.7968, respectively, and the coefficient of determination (R2) was 0.9997. If research to standardize a model for predicting blood sugar levels based on data and to verify data set collection and prediction accuracy continues, it is expected that it can be used for non-invasive blood sugar level management.

Large orchard apple classification system (대형 과수원 사과 분류 시스템)

  • Kim, Weol-Youg;Shin, Seung Seung-Jung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.4 no.4
    • /
    • pp.393-399
    • /
    • 2018
  • The development of unmanned AI continues, and the development of AI unmanned is aimed at more efficiently, accurately, and speedily the work that has been resolved by manpower such as industry, welfare, and manpower. AI unmanned technology is evolving in various places, and it is time to switch to unmanned systems from many industries and factories. We take this into consideration, and use the Deep Learning technology, which is one of the core technologies of artificial intelligence (AI), not the manpower but the fruits that pour the rails at once in a large orchard. We want to study the unmanned fruit sorting machine that can be operated under manager's supervision without dividing the fruit by type and grade and dividing by country of origin and grade. This unmanned automated classification system aims to reduce the labor cost by minimizing the manpower and to improve the

Automatic Recognition of Symbol Objects in P&IDs using Artificial Intelligence (인공지능 기반 플랜트 도면 내 심볼 객체 자동화 검출)

  • Shin, Ho-Jin;Jeon, Eun-Mi;Kwon, Do-kyung;Kwon, Jun-Seok;Lee, Chul-Jin
    • Plant Journal
    • /
    • v.17 no.3
    • /
    • pp.37-41
    • /
    • 2021
  • P&ID((Piping and Instrument Diagram) is a key drawing in the engineering industry because it contains information about the units and instrumentation of the plant. Until now, simple repetitive tasks like listing symbols in P&ID drawings have been done manually, consuming lots of time and manpower. Currently, a deep learning model based on CNN(Convolutional Neural Network) is studied for drawing object detection, but the detection time is about 30 minutes and the accuracy is about 90%, indicating performance that is not sufficient to be implemented in the real word. In this study, the detection of symbols in a drawing is performed using 1-stage object detection algorithms that process both region proposal and detection. Specifically, build the training data using the image labeling tool, and show the results of recognizing the symbol in the drawing which are trained in the deep learning model.

A Study on the Complementary Method of Aerial Image Learning Dataset Using Cycle Generative Adversarial Network (CycleGAN을 활용한 항공영상 학습 데이터 셋 보완 기법에 관한 연구)

  • Choi, Hyeoung Wook;Lee, Seung Hyeon;Kim, Hyeong Hun;Suh, Yong Cheol
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.499-509
    • /
    • 2020
  • This study explores how to build object classification learning data based on artificial intelligence. The data has been investigated recently in image classification fields and, in turn, has a great potential to use. In order to recognize and extract relatively accurate objects using artificial intelligence, a large amount of learning data is required to be used in artificial intelligence algorithms. However, currently, there are not enough datasets for object recognition learning to share and utilize. In addition, generating data requires long hours of work, high expenses and labor. Therefore, in the present study, a small amount of initial aerial image learning data was used in the GAN (Generative Adversarial Network)-based generator network in order to establish image learning data. Moreover, the experiment also evaluated its quality in order to utilize additional learning datasets. The method of oversampling learning data using GAN can complement the amount of learning data, which have a crucial influence on deep learning data. As a result, this method is expected to be effective particularly with insufficient initial datasets.

A study on stock price prediction through analysis of sales growth performance and macro-indicators using artificial intelligence (인공지능을 이용하여 매출성장성과 거시지표 분석을 통한 주가 예측 연구)

  • Hong, Sunghyuck
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.1
    • /
    • pp.28-33
    • /
    • 2021
  • Since the stock price is a measure of the future value of the company, when analyzing the stock price, the company's growth potential, such as sales and profits, is considered and invested in stocks. In order to set the criteria for selecting stocks, institutional investors look at current industry trends and macroeconomic indicators, first select relevant fields that can grow, then select related companies, analyze them, set a target price, then buy, and sell when the target price is reached. Stock trading is carried out in the same way. However, general individual investors do not have any knowledge of investment, and invest in items recommended by experts or acquaintances without analysis of financial statements or growth potential of the company, which is lower in terms of return than institutional investors and foreign investors. Therefore, in this study, we propose a research method to select undervalued stocks by analyzing ROE, an indicator that considers the growth potential of a company, such as sales and profits, and predict the stock price flow of the selected stock through deep learning algorithms. This study is conducted to help with investment.

Concurrent Detection for Vehicles and Lanes Using Light-Weight Model of Multi-Task CNN (멀티 테스크 CNN의 경량화 모델을 이용한 차량 및 차선의 동시 검출)

  • Shin, Hyeon-Sik;Kim, Hyung-Won;Hong, Sang-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.3
    • /
    • pp.367-373
    • /
    • 2022
  • As deep learning-based autonomous driving technology develops, artificial intelligence models for various purposes have been studied. Based on these studies, several models were used simultaneously to develop autonomous driving systems. It can occur by increasing hardware resource consumption. We propose a multi-tasks model using a shared backbone to solve this problem. This can solve the increase in the number of backbones for using AI models. As a result, in the proposed lightweight model, the model parameters could be reduced by more than 50% compared to the existing model, and the speed could be improved. In addition, each lane can be classified through lane detection using the instance segmentation method. However, further research is needed on the decrease in accuracy compared to the existing model.

Research model on stock price prediction system through real-time Macroeconomics index and stock news mining analysis (실시간 거시지표 예측과 증시뉴스 마이닝을 통한 주가 예측시스템 모델연구)

  • Hong, Sunghyuck
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.7
    • /
    • pp.31-36
    • /
    • 2021
  • As the global economy stagnated due to the Corona 19 virus from Wuhan, China, most countries, including the US Federal Reserve System, introduced policies to boost the economy by increasing the amount of money. Most of the stock investors tend to invest only by listening to the recommendations of famous YouTubers or acquaintances without analyzing the financial statements of the company, so there is a high possibility of the loss of stock investments. Therefore, in this research, I have used artificial intelligence deep learning techniques developed under the existing automatic trading conditions to analyze and predict macro-indicators that affect stock prices, giving weights on individual stock price predictions through correlations that affect stock prices. In addition, since stock prices react sensitively to real-time stock market news, a more accurate stock price prediction is made by reflecting the weight to the stock price predicted by artificial intelligence through stock market news text mining, providing stock investors with the basis for deciding to make a proper stock investment.

A Design of AI Cloud Platform for Safety Management on High-risk Environment (고위험 현장의 안전관리를 위한 AI 클라우드 플랫폼 설계)

  • Ki-Bong, Kim
    • Journal of Advanced Technology Convergence
    • /
    • v.1 no.2
    • /
    • pp.01-09
    • /
    • 2022
  • Recently, safety issues in companies and public institutions are no longer a task that can be postponed, and when a major safety accident occurs, not only direct financial loss, but also indirect loss of social trust in the company and public institution is greatly increased. In particular, in the case of a fatal accident, the damage is even more serious. Accordingly, as companies and public institutions expand their investments in industrial safety education and prevention, open AI learning model creation technology that enables safety management services without being affected by user behavior in industrial sites where high-risk situations exist, edge terminals System development using inter-AI collaboration technology, cloud-edge terminal linkage technology, multi-modal risk situation determination technology, and AI model learning support technology is underway. In particular, with the development and spread of artificial intelligence technology, research to apply the technology to safety issues is becoming active. Therefore, in this paper, an open cloud platform design method that can support AI model learning for high-risk site safety management is presented.

Deep Prediction of Stock Prices with K-Means Clustered Data Augmentation (K-평균 군집화 데이터 증강을 통한 주가 심층 예측)

  • Kyounghoon Han;Huigyu Yang;Hyunseung Choo
    • Journal of Internet Computing and Services
    • /
    • v.24 no.2
    • /
    • pp.67-74
    • /
    • 2023
  • Stock price prediction research in the financial sector aims to ensure trading stability and achieve profit realization. Conventional statistical prediction techniques are not reliable for actual trading decisions due to low prediction accuracy compared to randomly predicted results. Artificial intelligence models improve accuracy by learning data characteristics and fluctuation patterns to make predictions. However, predicting stock prices using long-term time series data remains a challenging problem. This paper proposes a stable and reliable stock price prediction method using K-means clustering-based data augmentation and normalization techniques and LSTM models specialized in time series learning. This enables obtaining more accurate and reliable prediction results and pursuing high profits, as well as contributing to market stability.