• Title/Summary/Keyword: 인공지능-딥러닝

Search Result 699, Processing Time 0.025 seconds

Attention/LIME method to analyze decision process of RNN (Attention과 LIME기법을 활용한 순환신경망의 의사결정 요인 분석)

  • Yoon, Joo-Sung;Park, Jong-Cheol;Ha, Jong-Su;An, Jin-Hyeon;Kim, Hyeon-Cheol
    • Proceedings of The KACE
    • /
    • 2017.08a
    • /
    • pp.253-256
    • /
    • 2017
  • 딥러닝으로 만들어진 모델의 내부는 black box와 같은 특성을 가져 동작 규칙을 알기 어렵다. 최근 기계학습의 발전으로 인공지능이 전보다 더 복잡한 문제를 해결할 수 있으나 위와 같은 이유로, 모델이 내린 판단의 근거를 알기 어렵다. 그러므로 딥러닝의 동작 규칙을 사람이 이해할 수 있는 형식으로 나타내려는 노력이 필요하다. 본 연구에서는 Attention과 LIME 기법을 활용하여 IMDB 데이터를 감성 분석한 순환신경망의 의사결정 요인을 분석하였다. 각 기법을 활용했을 때의 장단점과 실제 구현에 있어 등장하는 문제에 대해 알아보고자 한다.

  • PDF

Development of Robot Arm Placing technology based on Artificial Intelligence using image data (영상을 적용한 인공지능을 이용한 Robot Arm Placing 기술 개발)

  • Baek, Young-Jin;Kim, Wonha
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.652-655
    • /
    • 2020
  • 최근 딥 러닝을 이용해 기계로 인간을 대체하는 스마트 팩토리에 대한 연구 및 개발이 활발히 진행되고 있다. 그러나 FPCB를 Placing하는 방법에 기계를 도입하는 과정은 발전이 더딘 상태이다. 현재 로봇 팔을 이용해 Placing하는 방법은 사람이 직접 로봇 팔을 튜닝해 사용하고 있다. 이에 본 논문은 딥 러닝을 이용한 영상처리 기법을 활용해 FPCB를 사람의 개입 없이 트레이에 삽입하는 기법을 개발하였다. 이를 위해 여러 알고리즘을 비교한 후 각각의 장단점을 고려해 적합한 알고리즘을 제시하였다. 본 논문에서 제시하는 기법은 FPCB에 아무 행동을 가하지 않으며, 힘 센서, 깊이 센서 등 기타 센서들의 도움 없이 RGB 센서(카메라)를 통해 획득한 이미지만을 이용해 자동화가 가능하다. 또한, 개발 단계에서 실제 기계를 이용해 이미지 촬영, 이동 등을 진행했기 때문에 조명, 로봇 팔 위치 등 알고리즘 외 조건들에 영향을 받지 않고 실제 사용이 가능하다.

  • PDF

Trandemark detection system using deep learning-based algorithms in a metaverse environment (메타버스 환경에서의 딥 러닝 기반 알고리즘을 활용한 상표권 탐지 시스템)

  • Ji-Eun Lee;Hyung-Su Lee;Yong-Tae Shin
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.1-4
    • /
    • 2024
  • 코로나 19(Covide-19)이후 가상과 현실이 융·복합 되어 사회·경제·문학활동과 가치 창출이 가능한 메타버스가 차세대 핵심산업으로 부상하고 있다. 이에 자사 보유 기술, IP(Intellectual Property) 등을 활용하여 메타버스 플랫폼을 구축하고자 하는 기업들이 증가하여 지식재산권을 둔 법적 이슈들이 새롭게 나타나고 있다. 따라서 본 논문에서는 상표권 침해를 보호하기 위하여 딥 러닝 기반 객체 탐지모델인 YOLOv5 모델을 활용한 메타버스 환경에서의 상표권 탐지 시스템을 제안한다.

  • PDF

Grade Analysis and Two-Stage Evaluation of Beef Carcass Image Using Deep Learning (딥러닝을 이용한 소도체 영상의 등급 분석 및 단계별 평가)

  • Kim, Kyung-Nam;Kim, Seon-Jong
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.2
    • /
    • pp.385-391
    • /
    • 2022
  • Quality evaluation of beef carcasses is an important issue in the livestock industry. Recently, through the AI monitor system based on artificial intelligence, the quality manager can receive help in making accurate decisions based on the analysis of beef carcass images or result information. This artificial intelligence dataset is an important factor in judging performance. Existing datasets may have different surface orientation or resolution. In this paper, we proposed a two-stage classification model that can efficiently manage the grades of beef carcass image using deep learning. And to overcome the problem of the various conditions of the image, a new dataset of 1,300 images was constructed. The recognition rate of deep network for 5-grade classification using the new dataset was 72.5%. Two-stage evaluation is a method to increase reliability by taking advantage of the large difference between grades 1++, 1+, and grades 1 and 2 and 3. With two experiments using the proposed two stage model, the recognition rates of 73.7% and 77.2% were obtained. As this, The proposed method will be an efficient method if we have a dataset with 100% recognition rate in the first stage.

Face Frontalization Model with A.I. Based on U-Net using Convolutional Neural Network (합성곱 신경망(CNN)을 이용한 U-Net 기반의 인공지능 안면 정면화 모델)

  • Lee, Sangmin;Son, Wonho;Jin, ChangGyun;Kim, Ji-Hyun;Kim, JiYun;Park, Naeun;Kim, Gaeun;Kwon, Jin young;Lee, Hye Yi;Kim, Jongwan;Oh, Dukshin
    • Annual Conference of KIPS
    • /
    • 2020.11a
    • /
    • pp.685-688
    • /
    • 2020
  • 안면 인식은 Face ID를 비롯하여 미아 찾기, 범죄자 추적 등의 분야에 도입되고 있다. 안면 인식은 최근 딥러닝을 통해 인식률이 향상되었으나, 측면에서의 인식률은 정면에 비해 특징 추출이 어려우므로 비교적 낮다. 이런 문제는 해당 인물의 정면이 없고 측면만 존재할 경우 안면 인식을 통한 신원확인이 어려워 단점으로 작용될 수 있다. 본 논문에서는 측면 이미지를 바탕으로 정면을 생성함으로써 안면 인식을 적용할 수 있는 상황을 확장하는 인공지능 기반의 안면 정면화 모델을 구현한다. 모델의 안면 특징 추출을 위해 VGG-Face를 사용하며 특징 추출에서 생길 수 있는 정보 손실을 막기 위해 U-Net 구조를 사용한다.

Understanding the Artificial Intelligence Business Ecosystem for Digital Transformation: A Multi-actor Network Perspective (디지털 트랜스포메이션을 위한 인공지능 비즈니스 생태계 연구: 다행위자 네트워크 관점에서)

  • Yoon Min Hwang;Sung Won Hong
    • Information Systems Review
    • /
    • v.21 no.4
    • /
    • pp.125-141
    • /
    • 2019
  • With the advent of deep learning technology, which is represented by AlphaGo, artificial intelligence (A.I.) has quickly emerged as a key theme of digital transformation to secure competitive advantage for businesses. In order to understand the trends of A.I. based digital transformation, a clear comprehension of the A.I. business ecosystem should precede. Therefore, this study analyzed the A.I. business ecosystem from the multi-actor network perspective and identified the A.I. platform strategy type. Within internal three layers of A.I. business ecosystem (infrastructure & hardware, software & application, service & data layers), this study identified four types of A.I. platform strategy (Tech. vertical × Biz. horizontal, Tech. vertical × Biz. vertical, Tech. horizontal × Biz. horizontal, Tech. horizontal × Biz. vertical). Then, outside of A.I. platform, this study presented five actors (users, investors, policy makers, consortiums & innovators, CSOs/NGOs) and their roles to support sustainable A.I. business ecosystem in symbiosis with human. This study identified A.I. business ecosystem framework and platform strategy type. The roles of government and academia to create a sustainable A.I. business ecosystem were also suggested. These results will help to find proper strategy direction of A.I. business ecosystem and digital transformation.

Deep Learning Acoustic Non-line-of-Sight Object Detection (음향신호를 활용한 딥러닝 기반 비가시 영역 객체 탐지)

  • Ui-Hyeon Shin;Kwangsu Kim
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.1
    • /
    • pp.233-247
    • /
    • 2023
  • Recently, research on detecting objects in hidden spaces beyond the direct line-of-sight of observers has received attention. Most studies use optical equipment that utilizes the directional of light, but sound that has both diffraction and directional is also suitable for non-line-of-sight(NLOS) research. In this paper, we propose a novel method of detecting objects in non-line-of-sight (NLOS) areas using acoustic signals in the audible frequency range. We developed a deep learning model that extracts information from the NLOS area by inputting only acoustic signals and predicts the properties and location of hidden objects. Additionally, for the training and evaluation of the deep learning model, we collected data by varying the signal transmission and reception location for a total of 11 objects. We show that the deep learning model demonstrates outstanding performance in detecting objects in the NLOS area using acoustic signals. We observed that the performance decreases as the distance between the signal collection location and the reflecting wall, and the performance improves through the combination of signals collected from multiple locations. Finally, we propose the optimal conditions for detecting objects in the NLOS area using acoustic signals.

Feature Extraction and Recognition of Myanmar Characters Based on Deep Learning (딥러닝 기반 미얀마 문자의 특징 추출 및 인식)

  • Ohnmar, Khin;Lee, Sung-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.5
    • /
    • pp.977-984
    • /
    • 2022
  • Recently, with the economic development of Southeast Asia, the use of information devices is widely spreading, and the demand for application services using intelligent character recognition is increasing. This paper discusses deep learning-based feature extraction and recognition of Myanmar, one of the Southeast Asian countries. Myanmar alphabet (33 letters) and Myanmar numerals (10 numbers) are used for feature extraction. In this paper, the number of nine features are extracted and more than three new features are proposed. Extracted features of each characters and numbers are expressed with successful results. In the recognition part, convolutional neural networks are used to assess its execution on character distinction. Its algorithm is implemented on captured image data-sets and its implementation is evaluated. The precision of models on the input data set is 96 % and uses a real-time input image.

Basic Study on the Generation of Maritime Traffic Information (해상교통정보 생성에 관한 기초 연구)

  • Kim, Hye-jin;Oh, Jaeyong;Park, sekil
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2016.05a
    • /
    • pp.287-288
    • /
    • 2016
  • 선박과 선박간의 사고 위험도를 예측하는 교통정보 생성 기술을 해상교통관제센터에 적용하기에는 위험도 정보의 정확성에 한계가 있다. 또한 대상 해역에 대한 교통 패턴을 파악하는 밀집도 및 혼잡도와 같은 교통정보 생성 기술은 위험 우선순위 선박을 도출하는 것이 불가능하다. 복잡한 교통 패턴을 보이는 해상교통관제 해역에서 위험 선박을 인지하여 관제사의 관제 업무를 지원하기 위해서는 새로운 접근이 필요하다. 본 연구에서는 관제대상해역의 교통 상황을 총체적으로 파악하고 위험 선박을 사전에 인지할 수 있는 교통정보 생성을 위해서 기계학습 기법을 검토하였으며, 기존의 인공지능 한계를 극복하기 위한 딥러닝 프레임워크 도입을 검토하였다. 해상교통관제센터의 이미지, 메시지, 음성 등 다양한 형태의 연속적 자료들을 통합하고 이를 토대로 총체적인 분석을 통해 관제 업무를 지원할 수 있는 교통 상황 인지 정보를 생성할 수 있을 것으로 파악되었다. 빅데이터 기반의 기계학습은 보다 의미 있는 상황 인지 정보를 생성할 수 있기 때문에 이를 위한 관제 센터의 각종 데이터 통합이 필요하다.

  • PDF

Deep Learning Application of Gamma Camera Quality Control in Nuclear Medicine (핵의학 감마카메라 정도관리의 딥러닝 적용)

  • Jeong, Euihwan;Oh, Joo-Young;Lee, Joo-Young;Park, Hoon-Hee
    • Journal of radiological science and technology
    • /
    • v.43 no.6
    • /
    • pp.461-467
    • /
    • 2020
  • In the field of nuclear medicine, errors are sometimes generated because the assessment of the uniformity of gamma cameras relies on the naked eye of the evaluator. To minimize these errors, we created an artificial intelligence model based on CNN algorithm and wanted to assess its usefulness. We produced 20,000 normal images and partial cold region images using Python, and conducted artificial intelligence training with Resnet18 models. The training results showed that accuracy, specificity and sensitivity were 95.01%, 92.30%, and 97.73%, respectively. According to the results of the evaluation of the confusion matrix of artificial intelligence and expert groups, artificial intelligence was accuracy, specificity and sensitivity of 94.00%, 91.50%, and 96.80%, respectively, and expert groups was accuracy, specificity and sensitivity of 69.00%, 64.00%, and 74.00%, respectively. The results showed that artificial intelligence was better than expert groups. In addition, by checking together with the radiological technologist and AI, errors that may occur during the quality control process can be reduced, providing a better examination environment for patients, providing convenience to radiologists, and improving work efficiency.