• Title/Summary/Keyword: 인공지능-딥러닝

Search Result 699, Processing Time 0.032 seconds

3D Medical Image Data Augmentation for CT Image Segmentation (CT 이미지 세그멘테이션을 위한 3D 의료 영상 데이터 증강 기법)

  • Seonghyeon Ko;Huigyu Yang;Moonseong Kim;Hyunseung Choo
    • Journal of Internet Computing and Services
    • /
    • v.24 no.4
    • /
    • pp.85-92
    • /
    • 2023
  • Deep learning applications are increasingly being leveraged for disease detection tasks in medical imaging modalities such as X-ray, Computed Tomography (CT), and Magnetic Resonance Imaging (MRI). Most data-centric deep learning challenges necessitate the use of supervised learning methodologies to attain high accuracy and to facilitate performance evaluation through comparison with the ground truth. Supervised learning mandates a substantial amount of image and label sets, however, procuring an adequate volume of medical imaging data for training is a formidable task. Various data augmentation strategies can mitigate the underfitting issue inherent in supervised learning-based models that are trained on limited medical image and label sets. This research investigates the enhancement of a deep learning-based rib fracture segmentation model and the efficacy of data augmentation techniques such as left-right flipping, rotation, and scaling. Augmented dataset with L/R flipping and rotations(30°, 60°) increased model performance, however, dataset with rotation(90°) and ⨯0.5 rescaling decreased model performance. This indicates the usage of appropriate data augmentation methods depending on datasets and tasks.

An Artificial Intelligent based Learning Model for BIM Elements Usage (건축 부재 사용량 예측을 위한 인공지능 학습 모델)

  • Beom-Su Kim;Jong-Hyeok Park;Soo-Hee Han;Kyung-Jun Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.1
    • /
    • pp.107-114
    • /
    • 2023
  • This study described a method of designing and implementing an artificial intelligence-based learning model for predicting the usage of building members. Artificial intelligence (AI) is widely used in various fields thanks to the development of technology, but in the field of building information management (BIM), the case of utilizing AI technology is very low due to the specificity of the data in the field and the difficulty of collecting big data. Therefore, AI problems for BIM were discovered, and a new preprocessing technique was devised to solve the specificity of data in the field. An artificial intelligence model was implemented based on the designed preprocessing technique, and it was confirmed that the accuracy of predicting the construction component usage of the implemented artificial intelligence model is at a level that can be used in the actual industry.

Development of CCTV for Identification of Maskless Wearers based on Deep Learning (딥러닝 기반 마스크 미착용자 식별 CCTV 개발)

  • Lee, Se-Hoon;Kwon, Hyeon-guen;Kim, Young-Jin;Jeong, Ji-Seok;Seo, Hee-Ju
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.317-318
    • /
    • 2020
  • 본 논문에서는 얼굴검출 후 MobilnetV2의 방법을 이용하여 적은 연산량으로 CCTV가 실시간으로 마스크 착용 유무를 판단할 수 있는 방법을 제시하였다. 이를 통해 현재 이슈가 되고있는 코로나19 등 전염병의 전염 위험이 있는 주요 장소에서 인공지능 CCTV가 마스크 미착용자를 식별해 알려줌으로써 마스크 미착용자를 관리할 수 있는 방법을 제공하였다.

  • PDF

SAR Recognition of Target Variants Using Channel Attention Network without Dimensionality Reduction (차원축소 없는 채널집중 네트워크를 이용한 SAR 변형표적 식별)

  • Park, Ji-Hoon;Choi, Yeo-Reum;Chae, Dae-Young;Lim, Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.219-230
    • /
    • 2022
  • In implementing a robust automatic target recognition(ATR) system with synthetic aperture radar(SAR) imagery, one of the most important issues is accurate classification of target variants, which are the same targets with different serial numbers, configurations and versions, etc. In this paper, a deep learning network with channel attention modules is proposed to cope with the recognition problem for target variants based on the previous research findings that the channel attention mechanism selectively emphasizes the useful features for target recognition. Different from other existing attention methods, this paper employs the channel attention modules without dimensionality reduction along the channel direction from which direct correspondence between feature map channels can be preserved and the features valuable for recognizing SAR target variants can be effectively derived. Experiments with the public benchmark dataset demonstrate that the proposed scheme is superior to the network with other existing channel attention modules.

A Study on the Development of AI-Based Fire Fighting Facility Design Technology through Image Recognition (이미지 인식을 통한 AI 기반 소방 시설 설계 기술 개발에 관한 연구)

  • Gi-Tae Nam;Seo-Ki Jun;Doo-Chan Choi
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.4
    • /
    • pp.883-890
    • /
    • 2022
  • Purpose: Currently, in the case of domestic fire fighting facility design, it is difficult to secure highquality manpower due to low design costs and overheated competition between companies, so there is a limit to improving the fire safety performance of buildings. Accordingly, AI-based firefighting design solutions were studied to solve these problems and secure leading fire engineering technologies. Method: Through AutoCAD, which is widely used in existing fire fighting design, the procedures required for basic design and implementation design were processed, and AI technology was utilized through the YOLO v4 object recognition deep learning model. Result: Through the design process for fire fighting facilities, the facility was determined and the drawing design automation was carried out. In addition, by learning images of doors and pillars, artificial intelligence recognized the part and implemented the function of selecting boundary areas and installing piping and fire fighting facilities. Conclusion: Based on artificial intelligence technology, it was confirmed that human and material resources could be reduced when creating basic and implementation design drawings for building fire protection facilities, and technology was secured in artificial intelligence-based fire fighting design through prior technology development.

A Study on Design Space Exploration on AI accelerator (AI 가속기 설계 영역 탐색에 대한 연구)

  • Lee, Dong-Ju;Paek, Yun-Heung
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.535-537
    • /
    • 2022
  • AI 가속기는 머신 러닝 및 딥 러닝을 포함한 인공 지능 및 기계 학습 응용 프로그램의 연산을 더 빠르게 수행하도록 설계된 일종의 하드웨어 가속기 또는 컴퓨터 시스템이다. 가속기를 설계하기 위해선 설계 영역 탐색(Design Space Exploration)을 하여야 하고 여러 인공지능 중에서도 합성 곱 신경망(CNN)에 대한 설계 영역 탐색을 소개한다.

Class Classification and Validation of a Musculoskeletal Risk Factor Dataset for Manufacturing Workers (제조업 노동자 근골격계 부담요인 데이터셋 클래스 분류와 유효성 검증)

  • Young-Jin Kang;;;Jeong, Seok Chan
    • The Journal of Bigdata
    • /
    • v.8 no.1
    • /
    • pp.49-59
    • /
    • 2023
  • There are various items in the safety and health standards of the manufacturing industry, but they can be divided into work-related diseases and musculoskeletal diseases according to the standards for sickness and accident victims. Musculoskeletal diseases occur frequently in manufacturing and can lead to a decrease in labor productivity and a weakening of competitiveness in manufacturing. In this paper, to detect the musculoskeletal harmful factors of manufacturing workers, we defined the musculoskeletal load work factor analysis, harmful load working postures, and key points matching, and constructed data for Artificial Intelligence(AI) learning. To check the effectiveness of the suggested dataset, AI algorithms such as YOLO, Lite-HRNet, and EfficientNet were used to train and verify. Our experimental results the human detection accuracy is 99%, the key points matching accuracy of the detected person is @AP0.5 88%, and the accuracy of working postures evaluation by integrating the inferred matching positions is LEGS 72.2%, NECT 85.7%, TRUNK 81.9%, UPPERARM 79.8%, and LOWERARM 92.7%, and considered the necessity for research that can prevent deep learning-based musculoskeletal diseases.

A Study on the Recognition of English Pronunciation based on Artificial Intelligence (인공지능 기반 영어 발음 인식에 관한 연구)

  • Lee, Cheol-Seung;Baek, Hye-Jin
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.3
    • /
    • pp.519-524
    • /
    • 2021
  • Recently, the fourth industrial revolution has become an area of interest to many countries, mainly in major advanced countries. Artificial intelligence technology, the core technology of the fourth industrial revolution, is developing in a form of convergence in various fields and has a lot of influence on the edutech field to change education innovatively. This paper builds an experimental environment using the DTW speech recognition algorithm and deep learning on various native and non-native data. Furthermore, through comparisons with CNN algorithms, we study non-native speakers to correct them with similar pronunciation to native speakers by measuring the similarity of English pronunciation.

Development of Web Service for Liver Cirrhosis Diagnosis Based on Machine Learning (머신러닝기반 간 경화증 진단을 위한 웹 서비스 개발)

  • Noh, Si-Hyeong;Kim, Ji-Eon;Lee, Chungsub;Kim, Tae-Hoon;Kim, KyungWon;Yoon, Kwon-Ha;Jeong, Chang-Won
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.10
    • /
    • pp.285-290
    • /
    • 2021
  • In the medical field, disease diagnosis and prediction research using artificial intelligence technology is being actively conducted. It is being released as a variety of products for disease diagnosis and prediction, which are most widely used in the application of artificial intelligence technology based on medical images. Artificial intelligence is being applied to diagnose diseases, to classify diseases into benign and malignant, and to separate disease regions for use in identification or reading according to the risk of disease. Recently, in connection with cloud technology, its utility as a service product is increasing. Among the diseases dealt with in this paper, liver disease is a disease with very high risk because it is difficult to diagnose early due to the lack of pain. Artificial intelligence technology was introduced based on medical images as a non-invasive diagnostic method for diagnosing these diseases. We describe the development of a web service to help the most meaningful clinical reading of liver cirrhosis patients. Then, it shows the web service process and shows the operation screen of each process and the final result screen. It is expected that the proposed service will be able to diagnose liver cirrhosis at an early stage and help patients recover through rapid treatment.

Estimation of Traffic Volume Using Deep Learning in Stereo CCTV Image (스테레오 CCTV 영상에서 딥러닝을 이용한 교통량 추정)

  • Seo, Hong Deok;Kim, Eui Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.3
    • /
    • pp.269-279
    • /
    • 2020
  • Traffic estimation mainly involves surveying equipment such as automatic vehicle classification, vehicle detection system, toll collection system, and personnel surveys through CCTV (Closed Circuit TeleVision), but this requires a lot of manpower and cost. In this study, we proposed a method of estimating traffic volume using deep learning and stereo CCTV to overcome the limitation of not detecting the entire vehicle in case of single CCTV. COCO (Common Objects in Context) dataset was used to train deep learning models to detect vehicles, and each vehicle was detected in left and right CCTV images in real time. Then, the vehicle that could not be detected from each image was additionally detected by using affine transformation to improve the accuracy of traffic volume. Experiments were conducted separately for the normal road environment and the case of weather conditions with fog. In the normal road environment, vehicle detection improved by 6.75% and 5.92% in left and right images, respectively, than in a single CCTV image. In addition, in the foggy road environment, vehicle detection was improved by 10.79% and 12.88% in the left and right images, respectively.