• Title/Summary/Keyword: 인공지능-딥러닝

Search Result 699, Processing Time 0.034 seconds

A Discussion on AI-based Automated Picture Creations (인공지능기반의 자동 창작 영상에 관한 논구)

  • Junghoe Kim;Joonsung Yoon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.723-730
    • /
    • 2024
  • In order to trace the changes in the concept and understanding of automatically generated images, this study analogously explores the creative methods of photography and cinema, which represent the existing image fields, in terms of AI-based image creation methods and 'automaticity', and discusses the understanding and possibilities of new automatic image creation. At the time of the invention of photography and cinema, the field of 'automatic creation' was established for them in comparison to traditional art genres such as painting. Recently, as AI has been applied to video production, the concept of 'automatic creation' has been expanded, and experimental creations that freely cross the boundaries of literature, art, photography, and film are active. By utilizing technologies such as machine learning and deep learning, AI automated creation allows AI to perform the creative process independently. Automated creation using AI can greatly improve efficiency, but it also risks compromising the personal and subjective nature of art. The problem stems from the fact that AI cannot completely replace human creativity.

A Study on Model for Drivable Area Segmentation based on Deep Learning (딥러닝 기반의 주행가능 영역 추출 모델에 관한 연구)

  • Jeon, Hyo-jin;Cho, Soo-sun
    • Journal of Internet Computing and Services
    • /
    • v.20 no.5
    • /
    • pp.105-111
    • /
    • 2019
  • Core technologies that lead the Fourth Industrial Revolution era, such as artificial intelligence, big data, and autonomous driving, are implemented and serviced through the rapid development of computing power and hyper-connected networks based on the Internet of Things. In this paper, we implement two different models for drivable area segmentation in various environment, and propose a better model by comparing the results. The models for drivable area segmentation are using DeepLab V3+ and Mask R-CNN, which have great performances in the field of image segmentation and are used in many studies in autonomous driving technology. For driving information in various environment, we use BDD dataset which provides driving videos and images in various weather conditions and day&night time. The result of two different models shows that Mask R-CNN has higher performance with 68.33% IoU than DeepLab V3+ with 48.97% IoU. In addition, the result of visual inspection of drivable area segmentation on driving image, the accuracy of Mask R-CNN is 83% and DeepLab V3+ is 69%. It indicates Mask R-CNN is more efficient than DeepLab V3+ in drivable area segmentation.

Applicability Analysis of Constructing UDM of Cloud and Cloud Shadow in High-Resolution Imagery Using Deep Learning (딥러닝 기반 구름 및 구름 그림자 탐지를 통한 고해상도 위성영상 UDM 구축 가능성 분석)

  • Nayoung Kim;Yerin Yun;Jaewan Choi;Youkyung Han
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.4
    • /
    • pp.351-361
    • /
    • 2024
  • Satellite imagery contains various elements such as clouds, cloud shadows, and terrain shadows. Accurately identifying and eliminating these factors that complicate satellite image analysis is essential for maintaining the reliability of remote sensing imagery. For this reason, satellites such as Landsat-8, Sentinel-2, and Compact Advanced Satellite 500-1 (CAS500-1) provide Usable Data Masks(UDMs)with images as part of their Analysis Ready Data (ARD) product. Precise detection of clouds and their shadows is crucial for the accurate construction of these UDMs. Existing cloud and their shadow detection methods are categorized into threshold-based methods and Artificial Intelligence (AI)-based methods. Recently, AI-based methods, particularly deep learning networks, have been preferred due to their advantage in handling large datasets. This study aims to analyze the applicability of constructing UDMs for high-resolution satellite images through deep learning-based cloud and their shadow detection using open-source datasets. To validate the performance of the deep learning network, we compared the detection results generated by the network with pre-existing UDMs from Landsat-8, Sentinel-2, and CAS500-1 satellite images. The results demonstrated that high accuracy in the detection outcomes produced by the deep learning network. Additionally, we applied the network to detect cloud and their shadow in KOMPSAT-3/3A images, which do not provide UDMs. The experiment confirmed that the deep learning network effectively detected cloud and their shadow in high-resolution satellite images. Through this, we could demonstrate the applicability that UDM data for high-resolution satellite imagery can be constructed using the deep learning network.

Data Modeling for Cyber Security of IoT in Artificial Intelligence Technology (인공지능기술의 IoT 통합보안관제를 위한 데이터모델링)

  • Oh, Young-Taek;Jo, In-June
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.12
    • /
    • pp.57-65
    • /
    • 2021
  • A hyper-connected intelligence information society is emerging that creates new value by converging IoT, AI, and Bigdata, which are new technologies of the fourth industrial revolution, in all industrial fields. Everything is connected to the network and data is exploding, and artificial intelligence can learn on its own and even intellectual judgment functions are possible. In particular, the Internet of Things provides a new communication environment that can be connected to anything, anytime, anywhere, enabling super-connections where everything is connected. Artificial intelligence technology is implemented so that computers can execute human perceptions, learning, reasoning, and natural language processing. Artificial intelligence is developing advanced technologies such as machine learning, deep learning, natural language processing, voice recognition, and visual recognition, and includes software, machine learning, and cloud technologies specialized in various applications such as safety, medical, defense, finance, and welfare. Through this, it is utilized in various fields throughout the industry to provide human convenience and new values. However, on the contrary, it is time to respond as intelligent and sophisticated cyber threats are increasing and accompanied by potential adverse functions such as securing the technical safety of new technologies. In this paper, we propose a new data modeling method to enable IoT integrated security control by utilizing artificial intelligence technology as a way to solve these adverse functions.

The possibility of abusing Game the preventing way of abuse through AI (인공지능을 통한 게임의 악용과 개선방안 및 제안)

  • Jang, Hyunseo;Kim, Jinsu;Park, Namje
    • Annual Conference of KIPS
    • /
    • 2019.10a
    • /
    • pp.901-903
    • /
    • 2019
  • 인공지능 기술의 발전에 따라 산업, 교육, 게임, 의료, 국방, 교통 등에서 여러 가지 방면으로 활용되어가고 있다. 하지만 인공지능을 게임에 접목해 게임 내에서 사람보다 월등한 성적을 낼 수 있다는 것이다. 과거에는 메모리 변조, 패킷 변조 등의 공정한 플레이 규정을 파괴하는 프로그램을 사용하였다면 현재에는 딥러닝을 통해 학습된 게임 알고리즘은 이제까지의 프로그램과는 다르므로 게임 인공지능 산업의 개선방안을 제안하고자 한다.

Implementation of Physical Computing Module of AI Block Python Coding Platform (인공지능 블록 파이썬 코딩 플랫폼의 피지컬 컴퓨팅 모듈 구현)

  • Lee, Se-hoon;Nam, Ji-won;Kim, Gwan-pil;Jeon, Woo-jin;Kim, Ki-Tae
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.453-454
    • /
    • 2021
  • 본 논문에서는 딥아이(DIY) 블록 프로그래밍과 라즈베리파이의 피지컬 컴퓨팅을 활용해 엑츄에이터와 센서를 제어하고 센서를 통해 수집한 데이터를 전처리해 인공지능에 활용함으로써 효율적인 인공지능 교육 방식을 제안한다. 해당 방식은 블록코딩 방식을 사용함으로써 문자코딩 대비 오타을 줄이고 문법 구애율을 낮춤으로써 프로그래밍 입문자의 구문적 어려움을 최소화하고 개념과 전략적 학습을 극대화한다. 블록프로그래밍 사용언어로 파이썬을 채택해 입문자의 편의를 도모하고 파일처리, 크롤링, csv데이터 추출을 통해 인공지능 교육에 활용한다.

  • PDF

Learning Performance Analysis Using Deep Learning (딥러닝기법을 활용한 학습성과분석)

  • Oh, Jeong-Hoon;Yu, Heonchang
    • Annual Conference of KIPS
    • /
    • 2018.10a
    • /
    • pp.711-714
    • /
    • 2018
  • 본 연구의 목적은 교육관리시스템(LMS)에서의 학습활동로그를 바탕으로 학습성과 영향도를 분석하고 이를 예측하기 위한 모델을 개발하는데 있다. 연구방법은 먼저 상관분석을 사용하여 유의미한 변수를 선정하였으며, 딥러닝을 사용하여 예측 모델을 생성하였다. 모델 생성 결과 테스트 데이터 셋에 대해 약 84%의 정확도로 학습성과를 예측할 수 있었다. 본 연구는 온라인 교육환경에서 빅데이터와 인공지능을 적용할 수 있는 새로운 관점을 제공할 것으로 기대한다.

저화질 방송미디어의 고품질 변환 기술 개발 현황

  • Jo, Suk-Hui;Ra, Sang-Jung
    • Broadcasting and Media Magazine
    • /
    • v.27 no.4
    • /
    • pp.23-34
    • /
    • 2022
  • 과거에 제작된 SD/HD급 미디어에 대한 수요가 증가하고 영상처리 기술 분야에서의 인공지능 적용이 확산되면서 딥러닝 기반 저화질 미디어의 고품질 변환 기술 연구가 활발히 수행되고 있다. 본고에서는 SD/HD급으로 기제작된 저화질 미디어를 FHD(Full HD)나 4K-UHD(Ultra HD) 등 고품질 시청 환경에 적합하도록 화질을 개선하여 고품질 미디어로 변환하는데 필요한 주요 요소 기술 및 이를 적용한 고품질 변환 시스템의 개발 현황에 대하여 살펴본다.

Mobile Food Recommendation System for Patients U sing Light-weight Deep Learning and Knowledge Bases (경량 딥러닝과 지식베이스를 활용한 모바일 질환별 식품 추천 시스템)

  • Hyeon, Bumsu;Kim, Dohyun;Lee, SangKeun
    • Annual Conference of KIPS
    • /
    • 2020.05a
    • /
    • pp.534-535
    • /
    • 2020
  • 본 논문에서는 딥러닝과 지식베이스를 융합하여 활용한 질환 인식 및 식품 추천 시스템을 제안한다. 제안하는 시스템은 온전히 모바일 디바이스 내에서 작동하는 시스템이다. 본 시스템은 압축된 딥러닝 모델을 이용해 사용자 대화 텍스트를 분석하여 사용자의 질환을 예측한다. 그 후, 지식베이스를 기반으로 해당 질환 관리에 도움이 되는 식품을 매칭하고 사용자에게 추천한다. 이는 사용자 친화적 헬스케어 애플리케이션으로써 체크리스트 작성 등 번거로운 작업 없이도 사용자에게 유용한 건강 정보를 제공할 수 있다.

A Study on the Optimization of Data Augmentation Ratio using CTGAN (CTGAN기반 데이터 증강 비율 최적화 연구)

  • Da-Hun Seong;Yujin Lim
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.327-330
    • /
    • 2023
  • 머신러닝과 딥러닝 모델의 사용이 급증함에 따라 충분한 데이터 확보의 중요성이 부각되고 있다. 이에 따라 생성 모델을 통한 데이터 증강 기술이 주목받고 있으나, 증강 데이터를 활용했을 때 학습의 성능 분석은 아직 부족하다. 따라서 본 연구에서는 데이터 증강 시나리오에 따라 증강 비율별 합성 데이터의 유용성을 조사하고자 한다. 본 연구에서는 테이블 데이터를 증강하는 것에 초점을 맞추었으며, 이를 위해 테이블 데이터를 합성할 때 유용한 성능을 보이는 딥러닝 모델 CTGAN을 활용하였다. 실험에서 데이터를 증강하는 두 가지 다른 시나리오를 고려한 결과, 두 시나리오에서 모두 실험에서 설정한 증강 비율까지의 합성 데이터가 유용한 결과를 보임을 확인할 수 있었다.