• 제목/요약/키워드: 인공지능-딥러닝

Search Result 699, Processing Time 0.035 seconds

Comparison of Prediction Accuracy Between Regression Analysis and Deep Learning, and Empirical Analysis of The Importance of Techniques for Optimizing Deep Learning Models (회귀분석과 딥러닝의 예측 정확성에 대한 비교 그리고 딥러닝 모델 최적화를 위한 기법들의 중요성에 대한 실증적 분석)

  • Min-Ho Cho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.2
    • /
    • pp.299-304
    • /
    • 2023
  • Among artificial intelligence techniques, deep learning is a model that has been used in many places and has proven its effectiveness. However, deep learning models are not used effectively in everywhere. In this paper, we will show the limitations of deep learning models through comparison of regression analysis and deep learning models, and present a guide for effective use of deep learning models. In addition, among various techniques used for optimization of deep learning models, data normalization and data shuffling techniques, which are widely used, are compared and evaluated based on actual data to provide guidelines for increasing the accuracy and value of deep learning models.

Review of Artificial Intelligence and Deep Learning Technique for Hydrologic Prediction (수난 예측을 위한 인공지능 및 딥러닝 기법)

  • Hwang, SeokHwan;Lee, Jeongha;Oh, Byoung-Hwa
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.372-372
    • /
    • 2020
  • 사회가 다원화되고 발달하면서 생활환경과 행동양식에 따라 홍수 등의 수난(水難) 으로 인한 피해 정도와 양상은 크게 달라질 수 있으나, 수난으로 인한 체감 가능한 피해의 정도와 규모는 예측이 어려운 현실이다. 그리고, 최근 인터넷과 소셜 네트워크 서비스(SNS)의 급진적 발달은 재난 관리에 대중적 지식을 수집하여 활용하도록 촉진하고 있고, 이로 인해 재난 상황에서 '대중적인 정보가 기술자에 의해 어떻게 얼마나 신중하게 고려되어야 하는지와 어떻게 과학적으로 해석해야하는지'가 핵심 쟁점으로 부상하고 있다. 본 연구에서는 최근 널리 사용되는 인공지능 및 딥러닝 기법을 조사 분석하였다. 분석을 통해 수문 예측 분야에서 이러한 기술이 적용된 사례와 신기술을 조망해 보고 기존 기술이 인공지능 및 딥러닝 기법의 적용으로 대체 가능한 정도를 가늠해 보았다.

  • PDF

Interpretable Deep Learning Based On Prototype Generation (프로토타입 생성 기반 딥 러닝 모델 설명 방법)

  • Park, Jae-hun;Kim, Kwang-su
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.23-26
    • /
    • 2022
  • 딥 러닝 모델은 블랙 박스 (Black Box) 모델로 예측에 대한 근거를 제시하지 못해 신뢰성이 떨어지는 단점이 존재한다. 이를 해결하기 위해 딥 러닝 모델에 설명력을 부여하는 설명 가능한 인공지능 (XAI) 분야 연구가 활발하게 이루어지고 있다. 본 논문에서는 모델 예측을 프로토타입을 통해 설명하는 딥 러닝 모델을 제시한다. 즉, "주어진 이미지는 티셔츠인데, 그 이유는 티셔츠를 대표하는 모양의 프로토타입과 닮았기 때문이다."의 형태로 딥 러닝 모델을 설명한다. 해당 모델은 Encoder, Prototype Layer, Classifier로 구성되어 있다. Encoder는 Feature를 추출하는 데 활용하고 Classifier를 통해 분류 작업을 수행한다. 모델이 제시하는 분류 결과를 설명하기 위해 Prototype Layer에서 가장 유사한 프로토타입을 찾아 설명을 제시한다. 실험 결과 프로토타입 생성 기반 설명 모델은 기존 이미지 분류 모델과 유사한 예측 정확도를 보였고, 예측에 대한 설명력까지 확보하였다.

  • PDF

Application Target and Scope of Artificial Intelligence Machine Learning Deep Learning Algorithms (인공지능 머신러닝 딥러닝 알고리즘의 활용 대상과 범위 시스템 연구)

  • Park, Dea-woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.177-179
    • /
    • 2022
  • In the Google Deepmind Challenge match, Alphago defeated Korea's Sedol Lee (human) with 4 wins and 1 loss in the Go match. Finally, artificial intelligence is going beyond the use of human intelligence. The Korean government's budget for the Digital New Deal is 9 trillion won in 2022, and an additional 301 types of data construction projects for artificial intelligence learning will be secured. From 2023, the industrial paradigm will change with the use and application of learning of artificial intelligence in all fields of industry. This paper conducts research to utilize artificial intelligence algorithms. Focusing on the analysis and judgment of data in artificial intelligence learning, research on the appropriate target and scope of application of algorithms in artificial intelligence machine learning and deep learning learning is conducted. This study will provide basic data for artificial intelligence in the 4th industrial revolution technology and artificial intelligence robot use in the 5th industrial revolution technology.

  • PDF

STL-Attention based Traffic Prediction with Seasonality Embedding (계절성 임베딩을 고려한 STL-Attention 기반 트래픽 예측)

  • Yeom, Sungwoong;Choi, Chulwoong;Kolekar, Shivani Sanjay;Kim, Kyungbaek
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.95-98
    • /
    • 2021
  • 최근 비정상적인 네트워크 활동 감지 및 네트워크 서비스 프로비저닝과 같은 다양한 분야에서 응용되는 네트워크 트래픽 예측 기술이 네트워크 통신 문제에 의한 트래픽의 결측 및 네트워크 유저의 불규칙한 활동에 의한 비선형 특성 때문에 발생하는 성능 저하를 극복하기 위해 딥러닝 신경망에 대한 연구가 활성화되고 있다. 이 딥러닝 신경망 중 시계열 딥러닝 신경망은 단기 네트워크 트래픽 볼륨을 예측할 때 낮은 오류율을 보인다. 하지만, 시계열 딥러닝 신경망은 기울기 소멸 및 폭발과 같은 비선형성, 다중 계절성 및 장기적 의존성 문제와 같은 한계를 보여준다. 이 논문에서는 계절성 임베딩을 고려한 주의 신경망 기반 트래픽 예측 기법을 제안한다. 제안하는 기법은 STL 분해 기법을 통해 분해된 트래픽 트랜드, 계절성, 잔차를 이용하여 일별 및 주별 계절성을 임베딩하고 이를 주의 신경망을 기반으로 향후 트래픽을 예측한다.

DeepBlock: Web-based Deep Learning Education Platform (딥블록: 웹 기반 딥러닝 교육용 플랫폼)

  • Cho, Jinsung;Kim, Geunmo;Go, Hyunmin;Kim, Sungmin;Kim, Jisub;Kim, Bongjae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.3
    • /
    • pp.43-50
    • /
    • 2021
  • Recently, researches and projects of companies based on artificial intelligence have been actively carried out. Various services and systems are being grafted with artificial intelligence technology. They become more intelligent. Accordingly, interest in deep learning, one of the techniques of artificial intelligence, and people who want to learn it have increased. In order to learn deep learning, deep learning theory with a lot of knowledge such as computer programming and mathematics is required. That is a high barrier to entry to beginners. Therefore, in this study, we designed and implemented a web-based deep learning platform called DeepBlock, which enables beginners to implement basic models of deep learning such as DNN and CNN without considering programming and mathematics. The proposed DeepBlock can be used for the education of students or beginners interested in deep learning.

Applications of Artificial Intelligence in Mammography from a Development and Validation Perspective (유방촬영술에서 인공지능의 적용: 알고리즘 개발 및 평가 관점)

  • Ki Hwan Kim;Sang Hyup Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.82 no.1
    • /
    • pp.12-28
    • /
    • 2021
  • Mammography is the primary imaging modality for breast cancer detection; however, a high level of expertise is needed for its interpretation. To overcome this difficulty, artificial intelligence (AI) algorithms for breast cancer detection have recently been investigated. In this review, we describe the characteristics of AI algorithms compared to conventional computer-aided diagnosis software and share our thoughts on the best methods to develop and validate the algorithms. Additionally, several AI algorithms have introduced for triaging screening mammograms, breast density assessment, and prediction of breast cancer risk have been introduced. Finally, we emphasize the need for interest and guidance from radiologists regarding AI research in mammography, considering the possibility that AI will be introduced shortly into clinical practice.

Development and Evaluation of Flood Prediction Models Using Artificial Intelligence Techniques (인공지능 기법을 활용한 홍수예측모델 개발 및 평가 - 한강수계 댐을 중심으로 -)

  • Cho, Hemie;Uranchimeg, Sumiya;Yoo, Je-Ho;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.131-131
    • /
    • 2022
  • 기후변화의 영향으로 극치강우의 변동성이 커지고 있으며 계획빈도를 초과하는 폭우로 피해가 증가하고 있다. 기존의 물리기반의 홍수예측모델은 개념적 및 구조적 제약과 함께 다양한 유역조건 및 수문기상 조건에 기인한 강우-유출 관계의 불확실성을 고려하는 데 한계가 있다. 특히 한정된 홍수 사상을 통해 구축된 관측 자료로 인해 새로운 홍수 사상 예측 능력이 저조할 수밖에 없다. 따라서 기존 물리모형 기반의 홍수예측과 함께, 딥러닝(deep learning) 모형을 고려한 홍수예측 모델 개발과 개선이 필요하다. 본 연구에서는 다양한 분야에서 활용되는 인공지능(artificial intelligence, AI) 기술을 종합적으로 검토하고, 홍수 예측 측면에서의 활용 가능성 및 신뢰성을 고려하여 AI 기법을 채택하였다. 한강수계에 존재하는 댐 중 일부를 선정하여 대상 댐의 수문·기상학적 자료를 전처리한 후, 인공지능 기반의 홍수예측모형을 구축 및 최적화하였다. 다양한 예측인자와 모델 구성으로 홍수예측력에 대한 평가를 다각적으로 수행함으로써 홍수예측모델의 신뢰성을 제고하였다. 전반적으로 우수한 결과를 도출하였고, 유역면적이 작을수록 결과가 좋았다. 이는 넓은 유역일수록 복잡한 강우-유출 과정이 내재되어 있기 때문으로 판단되며, 넓은 유역에는 본 연구에서 활용한 자료에 추가적인 자료를 도입하여 모형 개선이 이루어져야 할 것으로 판단하였다. 수문 예측 연구에 통계모형이나 기계학습모형의 적용은 많이 있었지만, 딥러닝 기법 활용은 새로운 시도라는 점에서 의미가 있다.

  • PDF

Deep Learning CFRP Failure Classification based on Acoustic Emission Testing for Safety Inspection during TypeIII Hydrogen Vessel Operation (TypeIII 수소저장용기 가동 중 안전 검사를 위한 음향방출시험 기반 딥러닝 CFRP 소재 결함 분류)

  • Da-Hyun Kim;Byeong-Il Hwang;Gyeong-Yeong Kim;Dong-Ju Kim
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.7-10
    • /
    • 2023
  • 최근 기후 변화가 심각해짐에 따라 수소 에너지에 대한 관심이 집중되고 있으며 이를 안전하게 운송/보관할 수 있는 용기에 대한 연구도 활발히 진행되고 있다. 특히 고압 가스를 저장하는 TypeIII 용기의 노후화 및 안전과 관련되어 결함을 인지하는 연구가 활발하다. 그러나 이 용기의 외각층을 이루는 CFRP 소재는 탄소 섬유와 에폭시가 복잡한 구조로 구성되어 결함별 탐지가 매우 어렵다. 본 논문에서는 음향방출시험과 딥러닝을 활용하여 CFRP 결함 데이터셋을 구축하고 이를 분류할 수 있는 모델을 제안한다. 특히 CFRP 시편을 직접 제작하여 AE 센서를 부착하고 파괴하여 파형 데이터를 수집하였다. 이후 표현 학습을 통해 데이터의 특징을 압축/추출하고 유사도를 비교해 결함별 데이터를 판별하는 알고리즘을 개발하였다. 구축된 데이터셋의 실루엣 계수는 0.86으로 높은 군집도를 보였다. 마지막으로 구축된 데이터셋을 실시간으로 분류할 수 있는 1D-CNN 딥러닝 모델을 개발하였으며 99.33%의 높은 분류 정확도를 보였다.

  • PDF

Effect Analysis of a Deep Learning-Based Attention Redirection Compensation Strategy System on the Data Labeling Work Productivity of Individuals with Developmental Disabilities (딥러닝 기반의 주의환기 보상전략 시스템이 발달장애인의 데이터 라벨링 작업 생산성에 미치는 효과분석)

  • Yong-Man Ha;Jong-Wook Jang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.1
    • /
    • pp.175-180
    • /
    • 2024
  • This paper investigates the effect of a deep learning-based system on data labeling task productivity by individuals with developmental disabilities. It was found that interventions, particularly those using AI, significantly improved productivity compared to self-serving task. AI interventions were notably more effective than job coach-led approaches. This research underscores the positive role of AI in enhancing task efficiency for those with developmental disabilities. This study is the first to apply AI technology to the data labeling tasks of individuals with developmental disabilities and highlighting deep learning's potential in vocational training and productivity enhancement for this group.