• 제목/요약/키워드: 인공지능 기법

검색결과 1,040건 처리시간 0.031초

인공지능 기법을 활용한 홍수예측모델 개발 및 평가 - 한강수계 댐을 중심으로 - (Development and Evaluation of Flood Prediction Models Using Artificial Intelligence Techniques)

  • 조혜미;솜야 오랑치맥;유제호;권현한
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.131-131
    • /
    • 2022
  • 기후변화의 영향으로 극치강우의 변동성이 커지고 있으며 계획빈도를 초과하는 폭우로 피해가 증가하고 있다. 기존의 물리기반의 홍수예측모델은 개념적 및 구조적 제약과 함께 다양한 유역조건 및 수문기상 조건에 기인한 강우-유출 관계의 불확실성을 고려하는 데 한계가 있다. 특히 한정된 홍수 사상을 통해 구축된 관측 자료로 인해 새로운 홍수 사상 예측 능력이 저조할 수밖에 없다. 따라서 기존 물리모형 기반의 홍수예측과 함께, 딥러닝(deep learning) 모형을 고려한 홍수예측 모델 개발과 개선이 필요하다. 본 연구에서는 다양한 분야에서 활용되는 인공지능(artificial intelligence, AI) 기술을 종합적으로 검토하고, 홍수 예측 측면에서의 활용 가능성 및 신뢰성을 고려하여 AI 기법을 채택하였다. 한강수계에 존재하는 댐 중 일부를 선정하여 대상 댐의 수문·기상학적 자료를 전처리한 후, 인공지능 기반의 홍수예측모형을 구축 및 최적화하였다. 다양한 예측인자와 모델 구성으로 홍수예측력에 대한 평가를 다각적으로 수행함으로써 홍수예측모델의 신뢰성을 제고하였다. 전반적으로 우수한 결과를 도출하였고, 유역면적이 작을수록 결과가 좋았다. 이는 넓은 유역일수록 복잡한 강우-유출 과정이 내재되어 있기 때문으로 판단되며, 넓은 유역에는 본 연구에서 활용한 자료에 추가적인 자료를 도입하여 모형 개선이 이루어져야 할 것으로 판단하였다. 수문 예측 연구에 통계모형이나 기계학습모형의 적용은 많이 있었지만, 딥러닝 기법 활용은 새로운 시도라는 점에서 의미가 있다.

  • PDF

퍼지 이론을 실생활 적용구현 연구 (A Study on the Embodiment of Fuzzy Logic)

  • 정정민;최성
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2002년도 춘계학술발표논문집
    • /
    • pp.243-247
    • /
    • 2002
  • 현재 인간의 지능을 모방하는 인공지능 기법은 인간 친화적인 시스템의 자동화, 제품의 성능 향상 등 공학분야에 적용되기 시작하였고, 병의 진단 및 판정 , 경영의사 결정 등의 사회과학 분야까지 그 응용분야가 확대되고 있다. 이러한 인공지능을 컴퓨터에 의한 언어적 추론의 개념과 방법을 연구하여 추론하는데 사용되는 지식을 언어적으로 표현하는 것을 연구하였고, 인간이 서로간의 지능적이라고 인식하는 대로 행동하도록 컴퓨터가 만들어질 수 있는 가능성을 추구하는 분야 즉 인공지능을 실현하는데, 원론이 되는 퍼지의 이론을 중심으로 연구하였다.

예비교사를 위한 캡스톤 디자인 방법 활용 인공지능 융합교육 프로그램이 인공지능 교수효능감에 미치는 영향 (Effects of AI Convergence Education Program for Pre-service Teachers using Capstone Design Methods on AI Teaching Efficacy)

  • 이소율;이은경
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제66차 하계학술대회논문집 30권2호
    • /
    • pp.717-718
    • /
    • 2022
  • 본 연구에서는 예비교사의 인공지능 융합교육 역량 강화를 위한 캡스톤 디자인 기법 활용 인공지능 융합교육 프로그램을 개발하고 효과를 검증하였다. 개발된 교육 프로그램은 예비교사들이 스크래치 프로그래밍과 머신러닝포키즈, 캡스톤 디자인의 이해를 바탕으로, 인공지능 활용 융합 수업을 위한 주제 선정, 수업 설계 및 개발 후, 마이크로티칭을 하고 동료 평가 및 피드백을 하도록 조직되었다. 이는 2022년 1학기 K대학의 교양 강좌를 수강하는 예비교사들에게 처치되었다. 그 결과, 실험 대상자들의 인공지능 교수효능감의 사전-사후 t-검정에서 통계적으로 유의한 효과가 있음을 확인되었다.

  • PDF

멀티 에이전트 에지 컴퓨팅 환경에서 확장성을 지원하는 딥러닝 기반 동적 스케줄링 (Deep Learning-Based Dynamic Scheduling with Multi-Agents Supporting Scalability in Edge Computing Environments)

  • 임종범
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권9호
    • /
    • pp.399-406
    • /
    • 2023
  • 클라우드 컴퓨팅은 에지 서버가 동작하는 포그(fog) 레이어가 결합된 에지(edge) 컴퓨팅 아키텍처로 진화하고 있다. 에지 컴퓨팅 아키텍처가 관심을 받는 이유는 짧은 통신 지연으로 실시간 IoT 응용을 지원할 수 있기 때문이다. 이와 동시에 인공지능 기술을 도입한 많은 클라우드 작업 스케줄링 기법들이 제안되었다. 인공지능 기반의 클라우드 작업 스케줄링 기법은 기존 기법보다 더 좋은 성능을 보이지만 스케줄링 시간이 다소 소요된다는 단점이 있다. 이 논문에서는 에지 컴퓨팅 환경에서 분산 딥러닝 학습 기반의 동적 스케줄링 기법을 제안한다. 제안하는 기법은 기존 기법보다 스케줄링 시간이 짧은 장점이 있다. 또한 멀티 에이전트를 통한 분산 딥러닝 학습의 효과성을 보이기 위해 확장적인 실험 환경에서 제안 기법과 기존 인공지능 기법의 성능일 비교 평가하였다. 성능 실험 결과 기존 인공지능 기반 클라우드 작업 스케줄링 기법보다 짧은 스케줄링 시간을 보여 IoT 실시간 응용에 적합함을 보였으며, 확장적인 실험에서도 제안 기법이 완료된 작업의 수에 대하여 우수한 성능을 보임을 증명하였다.

An Analysis of Artificial Intelligence Education Research Trends Based on Topic Modeling

  • You-Jung Ko
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권2호
    • /
    • pp.197-209
    • /
    • 2024
  • 본 연구의 목적은 국내 인공지능 교육의 최근 연구 동향을 분석하여 향후 인공지능 교육의 방향성을 모색하는 것이다. 2016년부터 2023년 11월까지 RISS(Research Information Sharing Service)에 게재된 논문 중 인공지능 교육 관련 논문 697편을 대상으로 워드 클라우드(Word Cloud)와 LDA 토픽 모델링(Latent Dirichlet Allocation Topic Modeling) 기법을 활용하여 분석하였다. 분석결과, 주요 토픽으로는 생성형 인공지능 활용 교육, 인공지능 윤리 교육, 인공지능 융합 교육, 인공지능 활용에 대한 교사 인식과 역할, 대학 교육에서 인공지능 리터러시(Literacy) 개발, 인공지능 기반 교육과 연구 방향으로 여섯 가지가 도출되었다. 분석결과를 토대로, (1) 다양한 교과목에 생성형 인공지능 활용 확대, (2) 인공지능 사용을 위한 윤리적 지침, (3) 인공지능 교육의 장기적 영향 평가, (4) 고등교육에서 교사의 인공지능 활용 역량, (5) 대학의 인공지능 교육과정 다양화, (6) 인공지능 연구 추이 분석 및 교육 플랫폼(Platform) 개발 등을 제안하였다.

인공지능 알고리즘을 이용한 Mobile phone Li-ion charger의 설계 및 구현 (Design and Implementation of Mobile phone Li-ion charger using artificial intelligence algorithm)

  • 이창규;탁한호;이상배
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 추계학술대회 및 정기총회
    • /
    • pp.410-413
    • /
    • 2002
  • 일반적으로 휴대폰에는 리튬이온(Ll-lon) 전지(battery)를 많이 사용하고 있으며 그 전지(battery)를 충전시키기 위해 Microcontroller를 사용해서 과충전과 방전, 그리고 전지(battery) 보호와 충전에 대한 일정한 전류를 제어한다. 여기에서 충전 동작 시 필요한 일반직인 충전 전류 제어를 PWM의 방식에 의존하지 않고 인공지능 기법을 이용해 소프트웨어적으로 처리가 필요한 파라메터 값을 추정해 적용시키고자 한다. 따라서 개발한 충전시스템에 일반적인 충전 파라메터를 전압과 전류 그리고 시간으로 분류하여 Microcontroller에 그 파라메터를 적용시켜 PWM 방식으로 제어한 후에 실험에 의한 결과값을 얻는다. 그리고 이것들을 비교하여 보다 나은 충전시스템을 구현하기 위해 인공지능 기법 중에 하나인 신경망을 이용하여 전압과 전류 그리고 시간에 대한 파라메터를 처리하였다. 본 논문에서 신경망에 대한 파라메터의 학습을 일반 FC에서 구현하고 여기에서 추출된 학습 값을 Microcontroller에 적용시켜 입력값에 따라 다양한 PWM 신호를 발생시키도록 구현했다. 이후 실제적인 실험에 의한 결과값을 본 논문에서 서술하였다.

비전 인공지능 기반의 Recyclable-PET 선별에서 최적의 감독학습 기법 (A Method for Optimized Supervised Learning in Recyclable-PET Sorting based on Vision AI)

  • 김지영;지민구;정중은
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.640-642
    • /
    • 2021
  • 비전 기반의 재활용-PET 선별공정에서, PET 외 물체와의 식별 성능은 물론 PET 용기 내 포함된 이물질 및 라벨, 뚜껑의 존재 여부, 색상에 대한 검출 성능은 재활용 소재 품질에 중요한 영향을 미친다. 본 연구에서는 비전 인공지능 기반의 재활용-PET 자동 선별 시스템을 제안하고, 인공지능 모델의 제작에서 감독학습의 학습 효과를 최적화하기 위한 데이터 레이블링 기법을 제안한다. 재활용대상 PET 와 이물질 파트가 포함된 용기의 컨베이어벨트 선별공정 혼입을 재현한 실험을 통해서, 재활용 소재화 물량과 순도를 최대화하기 위한 인공지능 모델 생성 방법에 대해 고찰한다.

소프트 컴퓨팅 기법을 이용한 인공 두뇌 모델 (Artificial Brain Model Using Soft Computing Method)

  • 김성주;김종수;김용민;전홍태
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 춘계학술대회 학술발표 논문집 제14권 제1호
    • /
    • pp.311-314
    • /
    • 2004
  • 가장 완벽한 지능형 모델로 알려져 있는 두뇌는 인공 지능을 구현하기 위해 이해되어야 하는 많은 내용을 지니고 있다. 하지만, 현재까지는 두뇌의 생물학적인 정보처리 메커니즘은 극히 일부분에서 밝혀졌고 대부분의 내용은 추측이나 가정으로 설명되고 있다. 이미 밝혀진 두뇌의 정보처리 메커니즘에 기반한 정보처리 시스템은 다양한 응용 분야에 활용되어 지금의 시스템보다 월등한 성능을 보일 것으로 예상된다. 이에, 본 논문에서는 두뇌의 생물학적 흐름을 카테고리 별로 정리하였으며 이를 구현할 수 있는 소프트 컴퓨팅 기법을 소개한다. 다양한 소프트 컴퓨팅 기법을 이용하여 구현된 인공 두뇌 모델은 정보처리 과정에서 자율적이며, 효과적인 정보처리 성능을 보여줌을 알 수 있다. 이는 인공 지능 시스템의 새로운 도약에 필요한, 정형화된 모델로 활용될 수 있을 것으로 기대된다.

  • PDF

비연계 DB 테이블상에서의 데이터 추출을 위한 규칙 기반의 데이터 마이닝 기법 (A Rule-Based Data Mining Method among the Unrelated DataBase Table)

  • 김찬일;조대호
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 추계학술대회 학술발표 논문집
    • /
    • pp.220-224
    • /
    • 2000
  • 데이터 마이닝란 대량의 실제 데이터에서 묵시적이고 잠재적으로 유용한 정보를 추출하는 작업이다. 본 논문에서 서로 관계가 정의되지 않은 데이터베이스의 각 테이블간에서 필요한 정보를 추출 또는 가공하기 위해 데이터 마이닝 기법을 사용한다. 마이닝 기법인 연관 규칙은 어떤 사건이 일어나면 다른 사건이 일어나는 관련성을 의미하는 것이고, 제시된 규칙 기반의 데이터 마이닝 기법은 연관 규칙의 한 분야로서 데이터를 규칙 맞게 분류하는 기법이다. 이런 마이닝 기법을 구현하기 위해 인공지능 분야의 규칙 기반의 전문가 시스템을 사용하였고, 실 시스템인 GDS(Grating automatic Drawing System)에 적용하였다.

  • PDF

토픽모델링을 활용한 인공지능 관련 이슈 분석 (Analysis of Issues Related to Artificial Intelligence Based on Topic Modeling)

  • 노설현
    • 디지털융복합연구
    • /
    • 제18권5호
    • /
    • pp.75-87
    • /
    • 2020
  • 본 연구는 국내의 인공지능과 관련된 기사들을 LDA 알고리즘에 기반한 토픽모델링 기법으로 분석하여 인공지능 관련 주요 이슈들을 도출하고 세부적으로 분석함으로써 인공지능 기술이 전(全) 산업 분야와 융합을 통해 창출할 수 있는 새로운 가치를 통찰하고, 인공지능 기술을 지식 경영에 적용할 수 있는 분야를 도출하는데 유용한 정보를 생산하고자 하였다. 본 연구에서는 '인공지능'을 검색어로 하여 추출된 11개의 중앙지와 8개의 경제지, 주요 방송사의 2016년부터 2019년까지 3,889건의 기사를 대상으로 오픈 소프트웨어인 R을 활용한 토픽모델링 기법을 사용하여 토픽 별 키워드들을 추출하였다. 각 토픽의 키워드 간 연관성을 나타내는 PMI(Pointwise Mutual Information) 측도를 높이도록 relevance 파라미터 λ를 최적화하여 토픽 별 키워드를 추출하였으며, 키워드들로부터 타당한 근거를 바탕으로 토픽명을 추론하였다. 추출된 토픽들은 인공지능 기술의 응용 분야와 사회, 경제, 산업, 문화 전반에서 일어나고 있는 변화 및 정부의 지원 정책과 비전을 폭 넓게 나타냈다.