• Title/Summary/Keyword: 인공지능 기법

Search Result 1,040, Processing Time 0.028 seconds

Artificial Intelligence-based Classification Scheme to improve Time Series Data Accuracy of IoT Sensors (IoT 센서의 시계열 데이터 정확도 향상을 위한 인공지능 기반 분류 기법)

  • Kim, Jin-Young;Sim, Isaac;Yoon, Sung-Hoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.4
    • /
    • pp.57-62
    • /
    • 2021
  • As the parallel computing capability for artificial intelligence improves, the field of artificial intelligence technology is expanding in various industries. In particular, artificial intelligence is being introduced to process data generated from IoT sensors that have enoumous data. However, the limitation exists when applying the AI techniques on IoT network because IoT has time series data, where the importance of data changes over time. In this paper, we propose time-weighted and user-state based artificial intelligence processing techniques to effectively process IoT sensor data. This technique aims to effectively classify IoT sensor data through a data pre-processing process that personalizes time series data and places a weight on the time series data before artificial intelligence learning and use status of personal data. Based on the research, it is possible to propose a method of applying artificial intelligence learning in various fields.

A Study on the Development of Intelligent Behavior of Humanoid Robot (휴머노이드 로봇의 지능적 행위 구현에 관한 연구)

  • Suh, Joohee;Jang, Inwoo;Woo, Chongwoo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.11a
    • /
    • pp.23-26
    • /
    • 2008
  • 본 논문에서는 로봇의 지능적 행위를 구현하기 위하여 인공지능의 몇 가지 기법을 휴머노이드 로봇에 적용하고 이를 테스트 도메인에서 실험하는 연구결과를 기술하였다. 본 연구에서 적용한 기법들은, 인공지능의 계획기법에 기반한 로봇의 계획생성, A* 알고리즘을 적용한 길 찾기, 외부 센서 값에 기반한 장애물회피 및 로봇의 자기 위치인식, 그리고 원하는 물체를 파악하기 위해 템플릿 매칭을 이용한 영상인식 등 네 가지 방향으로 접근하였다. 전반적으로 로봇의 실험은, 웹 페이지로부터 사용자의 쇼핑 목록을 입력 받아, 인공지능의 계획기법에 기반하여 서버에서 이에 대한 실행계획을 만들고 난 후, 로봇이 서버로부터 TCP/IP 기반의 소켓 통신을 통하여 세부 실행계획을 전달받아 임무를 수행하게 된다. 또한 이러한 임무를 수행하기 위해서는 로봇자신의 현재위치에 대한 정보 및 목표물에 대한 위치인식이 요구되며, 이를 위해서 사전에 주어진 맵의 좌표를 찾아가는 방법을 사용하였다.

Classification of Breast Cancer using Explainable A.I. and Deep learning (딥러닝과 설명 가능한 인공지능을 이용한 유방암 판별)

  • Ha, Soo-Hee;Yoo, Jae-Chern
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.99-100
    • /
    • 2022
  • 본 논문에서는 유방암 초음파 이미지를 학습한 multi-modal 구조를 이용하여 유방암을 판별하는 인공지능을 제안한다. 학습된 인공지능은 유방암을 판별과 동시에, 설명 가능한 인공지능 기법과 ROI를 함께 사용하여 종양의 위치를 나타내준다. 시각적으로 판단 근거를 제시하기 때문에 인공지능의 판단 신뢰도는 더 높아진다.

  • PDF

An Implementation of Neural Networks Based Intelligent Characters for Two Dimensional Fighting Action Games (이차원 대전 액션 게임을 위한 신경망 기반의 지능 캐릭터 구현)

  • Na, Jong-Min;Oh, Ha-Ryoung;Seong, Yeong-Rak;Jung, Sung-Hoon;Cho, Byeong-Heon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2005.05a
    • /
    • pp.435-438
    • /
    • 2005
  • 현재 인공지능 기법은 우리 주위의 여러 분야에서 사용되고 있으며, 그 중요도가 점점 높아지고 있다. 이러한 분야 중에 하나가 바로 컴퓨터 게임 분야로 전통적인 인공지능 기법부터 근래에 게임과의 결합이 시도되고 있는 비전통적 기법에 이르기까지 다양한 종류의 방법이 시도되었고, 시도될 예정이다. 본 논문에서는 게임내에서 그 비중이 커져가고 있는 인공지능을 통한 캐릭터의 지능화 방안으로 신경망 기반의 지능 캐릭터를 제안하였다.

  • PDF

A Study on the Intelligent 3D Foot Scanning System (인공지능형 삼차원 Foot Scanning 시스템에 관한 연구)

  • 김영탁;박주원;탁한호;이상배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.391-395
    • /
    • 2004
  • 본 논문은 맞춤형 신발제작을 위하여 맞춤형 신발에 필요한 화형제작용 데이터를 위한 3차원 측정 장치를 통해 획득한 발의 형상을 인공지능 기법을 기반으로 하는 최적화된 형상을 복원하는 방법을 제시하고자 한다. 본 연구를 위해 개발된 시스템은 PC를 기반으로 하는 기존의 3차원측정 방식을 이용하여 상, 하, 좌, 우로 각각 장착된 8대의 CCD 카메라와 4대의 레이져를 통해 화형 및 발의 형상 데이터를 획득한다 획득된 데이터들은 인공지능 기법을 이용한 영상처리 알고리즘으로 처리되며, 처리 결과는 기존의 지능 기법을 도입하지 않은 시스템에 비해 노이즈제거 특성이 향상되었고, 후처리과정을 간소화 할 수 있다. 따라서 본 논문에서는 3차원 측정을 위해 기구적인 부분과 하드웨어적인 부분의 시스템을 구성하고, 데이터 처리용 소프트웨어에서 입력영상의 전처리 과정 중 영상의 이진화 단계에서 임계값을 결정하기 위하여 간단한 신경망을 사용하였으며, 이에 대한 결과를 제시하고자 한다.

  • PDF

A Method of Supervised Learning for Optimized Household Waste Detection based on Vision AI (비전 인공지능 기반 생활폐기물 선별에서 성능최적화를 위한 감독학습 기법)

  • Park, Sang-Hee;Lee, Bbun-Byul;Jung, Joong-Eun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.637-639
    • /
    • 2021
  • 인공지능 기반의 생활폐기물의 인식 및 선별에서, 선별 정확도의 저하는 인식 대상의 형태적 다양성과 학습데이터 부족 및 불균등성에 기인한다. 본 연구에서는 비전 인공지능 기반의 효과적인 폐기물 선별을 위한 인식 시스템 및 감독학습 기반의 인공지능 학습 기법을 제안한다. 생활폐기물 중 순환자원적 가치가 높은 CAN, PET, 그리고 이와 형상적으로 유사한 폐기물에 대해 본 연구에서 제안된 시스템에서 물체원형 및 훼손된 형태의 총 18 종 이미지 데이터를 대상으로, 감독학습기반의 인공지능 모델 제작에서 최적의 데이터 레이블링을 위한 분류체계를 제시한다.

인공지능과 핀테크 보안

  • Choi, Daeseon
    • Review of KIISC
    • /
    • v.26 no.2
    • /
    • pp.35-38
    • /
    • 2016
  • 본 논문에서는 핀테크 보안에 활용 가능한 딥러닝 기술을 살펴본다. 먼저 인공지능과 관련된 보안 이슈를 인공지능이 사람을 위협하는 상황에 대한 보안(Security FROM AI), 인공지능 시스템이나 서비스를 악의적인 공격으로부터 보호하는 이슈(Security OF AI), 인공지능 기술을 활용해 보안 문제를 해결하는 것(Security BY AI) 3가지로 구분하여 살펴본다. Security BY AI의 일환으로 딥러닝에 기반한 비정상탐지(anomaly detection)과 회귀분석(regression)기법을 설명하고, 이상거래탐지, 바이오인증, 피싱, 파밍 탐지, 본인확인, 명의도용탐지, 거래 상대방 신뢰도 분석 등 핀테크 보안 문제에 활용할 수 있는 방안을 살펴본다.

A study on the Fingerprint Recognition Singnal Process Board Design using Artificial Intelligence based on the ARM Processor (인공지능기법을 이용한 ARM프로세스 기반의 지문인식 신호처리 보드 설계에 관한 연구)

  • 김동한;강종윤;공석민;이주상;이재현;탁한호
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.287-290
    • /
    • 2002
  • 지문인식 알고리즘 구현에 있어서 일반적인 전처리 과정을 거쳐, 특징추출시 본 논문에서는 방향성이 추출된 영상에서 블록을 형성하여 각 블록에서의 방향성 특징들을 인공지능 기법의 한 분야인 신경회로망의 입력패턴으로 사용하여 특이점 추출을 수행했으며, 이를 바탕으로 PC없이 독립적으로 동작할 수 있는 지문인식 신호처리보드를 설계하여 그 신뢰성을 테스트한 결과 충분히 독립적으로 동작할 수 있음을 입증하였다.

A Study on the Efficiency of Imbalanced Data Processing Techniques for Exercise Prediction in COPD Patients (COPD 환자 운동 예측을 위한 불균형 데이터 처리 기법의 효율성에 관한 연구)

  • Hyeonseok Jin;Sehyun Cho;Jayun Choi;Kyungbaek Kim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2024.05a
    • /
    • pp.652-655
    • /
    • 2024
  • COPD(Chronic Obstructive Pulmonary Disease)는 장기간에 걸쳐 기도가 좁아지는 폐질환으로, 규칙적 운동은 호흡을 용이하게 하고 증상을 개선할 수 있는 주요 자가관리 중재법 중 하나이다. 건강정보 데이터와 인공지능을 사용하여 규직적 운동 이행군과 불이행군을 선별하여 자가관리 취약 집단을 파악하는 것은 질병관리 측면에서 비용효과적인 전략이다. 하지만 많은 양의 데이터를 확보하기 어렵고, 규칙적 운동군과 그렇지 않은 환자의 비율이 상이하기 때문에 인공지능 모델의 전체적인 선별 능력을 향상시키기 어렵다는 한계가 있다. 이러한 한계를 극복하기 위해 본 연구에서는 국민건강영양조사 데이터를 사용하여 머신러닝 모델인 XGBoost와 딥러닝 모델인 MLP에 오버샘플링, 언더샘플링, 가중치 부여 등 불균형 데이터 처리 기법을 적용 후 성능을 비교하여 가장 효과적인 불균형 데이터 처리 기법을 제시한다.