• Title/Summary/Keyword: 인공지능 개발자

Search Result 265, Processing Time 0.029 seconds

Quality Evaluation of Chest X-ray Images using Region Segmentation based on 3D Histogram (3D 히스토그램 기반 영역분할을 이용한 흉부 X선 영상 품질 평가)

  • Choi, Hyeon-Jin;Bea, Su-Bin;Park, Ye-Seul;Lee, Jung-Won
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.903-906
    • /
    • 2021
  • 인공지능 기술 발전으로, 의료영상 분야에서도 딥러닝 기반 질병 진단 연구가 활발히 진행되고 있다. 딥러닝 모델 개발 시, 학습 데이터 품질은 모델의 성능과 신뢰성에 매우 큰 영향을 미친다. 그러나 의료 분야의 경우 도메인 지식에 대한 진입 장벽이 높아 개발자가 학습에 사용되는 의료영상 데이터의 품질을 평가하기 어렵다. 이로 인해, 많은 의료영상 분야에서는 각 분야의 특성(질병의 종류, 관찰 아나토미 등)에 따른 영상 품질 평가 방법을 제시해왔다. 그러나 기존의 방법은 특정 질병에 초점이 맞춰져, 일반화된 품질 평가 기준을 제시하고 있지 않다. 따라서 본 논문에서는 대부분의 흉부 질환을 진단하기 위한 흉부 X선 영상의 품질을 평가할 수 있는 기준을 제안한다. 우선, 흉부 X선 영상을 대상으로 관찰된 영역인 심장, 횡격막, 견갑골, 폐 등을 분할하여, 3D 히스토그램을 기반으로 각 영역별 통계적인 정밀 품질 평가 기준을 제안한다. 본 연구에서는 JSRT, Chest 14의 오픈 데이터셋을 활용하여 적용 실험을 수행하였으며, 민감도는 97.6%, 특이도는 92.8%의 우수한 성능을 확인하였다.

A Study on the Low(No)-Code Platform Based on Web Crawling and NLP for Providing Framework-Specific Code (프레임워크 맞춤형 코드 제공을 위한 웹 크롤링과 NLP 기반 노코드 플랫폼 연구)

  • Chae-Rim Yoon;Song-Ie Kim;In-Bin Baik;Jin-Hwan Woo;Jae-Hyeong Song;Gi-Young Beak
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.945-946
    • /
    • 2023
  • 4차 산업혁명과 코로나19 영향으로 개발자 수요가 급증하며, 노코드 및 로우코드 플랫폼과 자연어 처리 기반 인공지능이 주목받고 있다. 본 연구는 프로그래밍 접근성 향상을 위한 노코드 플랫폼을 탐구하며, 사용자가 UI를 통해 직관적으로 프로젝트를 구축할 수 있는 설계 방식을 제시한다. 본 연구에서는 웹 크롤링과 자연어 처리 모델 학습에 기반한 아키텍처와 방향성을 제시한다. 사용자는 화면을 구성하고 프레임워크 선택 후 프로젝트를 간단하게 구축할 수 있다. 이 연구는 전문 지식 없이도 소프트웨어 개발에 쉽게 접근할 수 있는 방법론을 제시하며, 접근성과 포용성 강화에 기여한다.

Coexistence Direction of AI and Webtoon Artist

  • Bo-Ra Han
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.2
    • /
    • pp.87-99
    • /
    • 2024
  • This study aims to identify the competencies required for webtoon artists to survive in the future era of AI commercialization. It explores the current and future use of AI in webtoons, and predicts the role of artists in the future webtoon industry. The study finds that AI will replace human workers in some areas, but human empathy-related fields can be sustained. Artist roles like story projectors, Visual directors, and AI editors were identified as potential models for the changing role of artists. To address terminology ambiguity, a three-step AI categorization mechanical type AI, humanoid type AI, and transcendent type AI was proposed for a more realistic separation of AI capabilities. The researcher suggested these findings as guidelines for developing skills in emerging artists or re-skilling existing ones, emphasizing collaboration with AI for mutual growth rather than a negative acceptance of new technology.

자율운항선박 원격제어시 발생하는 선박 조종 특성에 대한 분석

  • 전주영;임정빈
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.137-138
    • /
    • 2022
  • 자율운항선박(Maritime Autonomous Surface Ship, MASS)은 전 세계적으로 활발히 연구 개발되고 있다. 국제해사기구(IMO)에서 규정하는 자율도 레벨(Degree of autonomy)의 Degree four에 해당하는 자율운항선박 개발까지 진행되는 가운데, 우리가 연구하고 있는 원격제어는 Degree two에서부터 필요한 주요 개발되어야 하는 핵심 기술 중 하나이다. 원격지에서 운항자가 원격제어시 발생되는 지연 상황에 대해 파악하였고 그중 선박 조종 특성에 의한 지연을 확인하였다. 추후 선박 조종에 영향을 주는 바람, 파고 등의 인자를 추가하여 보다 구체적인 연구 결과를 제시할 예정이다.

  • PDF

Development of interactive self-system based on artificial intelligent speaker for treatment of children with developmental disabilities (발달 장애 아동 치료를 위한 인공지능 스피커 기반 대화형 자가 시스템 개발)

  • Wee, YeJin;Kye, SeulA;Bae, SeoYeon;Choi, SeoungPyo;Lee, OnSeok
    • Annual Conference of KIPS
    • /
    • 2019.10a
    • /
    • pp.1151-1152
    • /
    • 2019
  • 발달 장애는 신체 및 정신이 해당하는 나이에 맞게 발달하지 않은 상태로, 다른 아동에 비해 신경정신과적 질환 발생 확률이 높기 때문에 발달장애 아동의 치료는 매우 중요하다. 그러나 주관적 판단에 의해 이루어지는 기존 작업치료의 경우, 정량적 성과 지표를 확인하기 힘들고 대상자 스스로 지속적으로 진행하기에 한계가 있다. 본 연구에서는 치료 모델을 가상 공간상에 구현하여 공간에 구애받지 않고 치료를 진행할 수 있으며, 수행 결과에 대한 자료를 정확하고 지속적으로 기록하며 확인할 수 있도록 하였다. 또한, AI 스피커를 통해 치료에 대한 피드백을 줌으로써, 대상자 스스로 실시하여 치료자의 개입을 줄여 심리적 부담을 덜어 더욱 정확한 수행이 이루어지도록 하였다.

Construction of Training Data and Model Training for YOLOv4-based Factory Operation Safety Management (YOLOv4 기반의 공장 근로자 안전관리를 위한 학습 데이터 구축과 모델 학습)

  • Lee, Taejun;Cho, Minwoo;Song, Jiho;Hwang, Chulhyun;Jung, Heokyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.252-254
    • /
    • 2021
  • According to the Institute for Occupational Safety and Health, the number of industrial injuries in 2019 was 109,242, an increase of 6.8% from 2018. In this situation, the government and companies are discussing the development of core technologies for preventing safety accidents on site based on ICT in the field of construction and construction. In these fields, technologies using computer vision and artificial intelligence have recently been widely used. In this paper, we built training data for safety management of factory workers and trained a model based on YOLOv4. It is believed that this can be used as an initial study to predict the risk situation of workers in factories.

  • PDF

A Study on the Knowledge Base Construction of Expert System for S/W Project Management (소프트웨어 사업관리 지원용 전문가시스템의 지식베이스 구축에 관한 연구)

  • 김화수;최병권
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2000.11a
    • /
    • pp.397-406
    • /
    • 2000
  • 대부분의 국방정보시스템의 소프트웨어는 높은 가용성, 신뢰성, 신속성, 정확성 등을 요구하는 대규모이면서 복잡한 실시간 시스템이다. 이러한 국방정보시스템의 소프트웨어 개발사업에 있어서 저비용 고효율의 미개국방경영 건설을 위하고 강한 전투력을 육성하기 위해서는 국방정보시스템의 효율적인 소프트웨어 개발사법이 요구된다. 따라서, 국방정보시스템의 소프트웨어 사업관리자가 개발사업을 관리하고 감독하는데 있어서 개발자와 사용자간의 조정 및 통제 기능을 수행하고 해당 국방정보시스템의 특성을 파악하여 성공적인 사업수행을 할 수 있도록 기술적인 사업관리 측면에서 구체적이고 상세화된 방안/지침을 제공하기 위한 전문가시스템의 지식베이스 도메인 지식개발에 관한 연구이다. 기존의 국방정보시스템의 사업관리자가 경험을 동해 축적해 온 기술, 정책, 아이디어, 노하우 등에 대한 지식을 습득하고 사업 관련자료에서 제시한 소프트웨어 생명주기 단계별 방안이나 지침 등을 바탕으로 하여 식별된 사실이나 내용을 지식베이스로 구축하여 국방정보시스템의 사업관리자가 필요로 할 때 설명모듈을 거쳐 임무 및 세부활동사항을 게시하여 줌으로써 사업관리 경험이 부족하거나 사업관리자가 교체되었을 때 사업관리자들이 업무를 지속적으로 연계시켜 임무수행이 가능하도록 기초/기반 여건을 제공하고자 한다. 본 논문은 국방정보시스템의 소프트웨어 개발사업에서 소프트웨어 생명주기 단계별 사업관리자의 임무 및 세부활동사항 지원용 전문가시스템을 개발할 때 이용할 수 있도록 도메인 지식을 개발하는 것이며 논문의 결과를 활용시 기대되는 효과는 본문을 참고 바란다.의 장점을 취합하여 설계되었다. 본 시스템은 기존의 UN/EDIFACT표준을 사용하고 있는 EDI환경과 기존 VAN 방식의 EDI 중계 시스템과 연동되며, 향후 관세청의 XML/EDI 표준 시행을 미리 대비하는 선도연구로서 자리매김이 된다. 본 연구에서는 개발된 XML/EDI 통관시스템은 향후, 서비스의 최대 걸림돌이 되어왔던 값비싼 EDI 사용료의 부담에서 벗어날 수 있게 할 것이며, 저렴한 EDI구축/운영 비용으로 전자문서교환의 활성화와 XML이 인터넷 기반의 문서유통 표준으로 자리매김할 수 있는 중요한 계기가 될 것이다.재무/비재무적 지표를 고려한 인공신경망기법의 예측적중률이 높은 것으로 나타났다. 즉, 로지스틱회귀 분석의 재무적 지표모형은 훈련, 시험용이 84.45%, 85.10%인 반면, 재무/비재무적 지표모형은 84.45%, 85.08%로서 거의 동일한 예측적중률을 가졌으나 인공신경망기법 분석에서는 재무적 지표모형이 92.23%, 85.10%인 반면, 재무/비재무적 지표모형에서는 91.12%, 88.06%로서 향상된 예측적중률을 나타내었다.ting LMS according to increasing the step-size parameter $\mu$ in the experimentally computed. learning curve. Also we find that convergence speed of proposed algorithm is increased by (B+1) time proportional to B which B is

  • PDF

Analyzing the effects of artificial intelligence (AI) education program based on design thinking process (디자인씽킹 프로세스 기반의 인공지능(AI) 교육 프로그램 적용 효과분석)

  • Lee, Sunghye
    • The Journal of Korean Association of Computer Education
    • /
    • v.23 no.4
    • /
    • pp.49-59
    • /
    • 2020
  • At the beginning of the discussion of AI education in K-12 education, the study was conducted to develop and apply an AI education program based on Design Thinking and analyze the effects of the AI education programs. In the AI education program, students explored and defined the AI problems they were interested in, gathered the necessary data to build an AI model, and then developed a project using scratch. In order to analyze the effectiveness of the AI education program, the change of learner's perception of the value of AI and the change of AI efficacy were analyzed. The overall perception of the AI project was also analyzed. As a result, AI efficacy was significantly increased through the experience of carrying out the project according to the Design Thinking process. In addition, the efficacy of solving problems with AI was influenced by the level of use of programming languages. The learner's overall perception of the AI project was positive, and the perceptions of each stage of the AI project (AI problem understanding and problem exploration, practice, problem definition, problem solving idea implementation, evaluation and presentation) was also positive. This positive perception was higher among students with high level of programming language use. Based on these results, the implications for AI education were suggested.

Deriving adoption strategies of deep learning open source framework through case studies (딥러닝 오픈소스 프레임워크의 사례연구를 통한 도입 전략 도출)

  • Choi, Eunjoo;Lee, Junyeong;Han, Ingoo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.27-65
    • /
    • 2020
  • Many companies on information and communication technology make public their own developed AI technology, for example, Google's TensorFlow, Facebook's PyTorch, Microsoft's CNTK. By releasing deep learning open source software to the public, the relationship with the developer community and the artificial intelligence (AI) ecosystem can be strengthened, and users can perform experiment, implementation and improvement of it. Accordingly, the field of machine learning is growing rapidly, and developers are using and reproducing various learning algorithms in each field. Although various analysis of open source software has been made, there is a lack of studies to help develop or use deep learning open source software in the industry. This study thus attempts to derive a strategy for adopting the framework through case studies of a deep learning open source framework. Based on the technology-organization-environment (TOE) framework and literature review related to the adoption of open source software, we employed the case study framework that includes technological factors as perceived relative advantage, perceived compatibility, perceived complexity, and perceived trialability, organizational factors as management support and knowledge & expertise, and environmental factors as availability of technology skills and services, and platform long term viability. We conducted a case study analysis of three companies' adoption cases (two cases of success and one case of failure) and revealed that seven out of eight TOE factors and several factors regarding company, team and resource are significant for the adoption of deep learning open source framework. By organizing the case study analysis results, we provided five important success factors for adopting deep learning framework: the knowledge and expertise of developers in the team, hardware (GPU) environment, data enterprise cooperation system, deep learning framework platform, deep learning framework work tool service. In order for an organization to successfully adopt a deep learning open source framework, at the stage of using the framework, first, the hardware (GPU) environment for AI R&D group must support the knowledge and expertise of the developers in the team. Second, it is necessary to support the use of deep learning frameworks by research developers through collecting and managing data inside and outside the company with a data enterprise cooperation system. Third, deep learning research expertise must be supplemented through cooperation with researchers from academic institutions such as universities and research institutes. Satisfying three procedures in the stage of using the deep learning framework, companies will increase the number of deep learning research developers, the ability to use the deep learning framework, and the support of GPU resource. In the proliferation stage of the deep learning framework, fourth, a company makes the deep learning framework platform that improves the research efficiency and effectiveness of the developers, for example, the optimization of the hardware (GPU) environment automatically. Fifth, the deep learning framework tool service team complements the developers' expertise through sharing the information of the external deep learning open source framework community to the in-house community and activating developer retraining and seminars. To implement the identified five success factors, a step-by-step enterprise procedure for adoption of the deep learning framework was proposed: defining the project problem, confirming whether the deep learning methodology is the right method, confirming whether the deep learning framework is the right tool, using the deep learning framework by the enterprise, spreading the framework of the enterprise. The first three steps (i.e. defining the project problem, confirming whether the deep learning methodology is the right method, and confirming whether the deep learning framework is the right tool) are pre-considerations to adopt a deep learning open source framework. After the three pre-considerations steps are clear, next two steps (i.e. using the deep learning framework by the enterprise and spreading the framework of the enterprise) can be processed. In the fourth step, the knowledge and expertise of developers in the team are important in addition to hardware (GPU) environment and data enterprise cooperation system. In final step, five important factors are realized for a successful adoption of the deep learning open source framework. This study provides strategic implications for companies adopting or using deep learning framework according to the needs of each industry and business.

Development of AI-based 5-axis tooth processing machine monitoring system (AI 기반의 5축치아가공기 모니터링 시스템 개발)

  • Kim, Hong-youn;Kim, Seu-hong;Piao, Hai-lian
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.753-755
    • /
    • 2021
  • 본 논문에서 기존의 치아가공기는 회전하는 모터를 사용하여 구성하였으나 이러한 모터는 정밀도, 반복정밀도가 50um 이하로 가공물 가공시에 치기공사나 치과의사가 사람에 맞추어 다시 작업을 해야하는 불편함과 시간적, 작업자의 피로도를 높일수 있는데 이러한 모터에 스크류나 밸트를 연결하여 선형적으로 움직일 수 있는 리니어모듈과 리니어모터를 적용하게되면 20um수준의 고정밀의 위치제어가 가능한 5축 치아가공기를 만들 수 있었다. 또한 MEMS센서를 이용하여 스핀들의 상태를 모니터링 하고 임계값을 지정하여 이상 신호 발생시 모터를 멈추어 위험상황에 대해서 인공지능기법을 이용하여 정지하거나 관리자에게 알림을 주어 효과적으로 5축치아가공기를 운영할 수 있도록 하였다.