• 제목/요약/키워드: 인공지능 가속기

검색결과 16건 처리시간 0.026초

인공지능 가속기 데이터 흐름 다양성에 대한 연구 (A Study on the Dataflow Diversity of Al accelerator)

  • 이동주;백윤흥
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.482-484
    • /
    • 2023
  • 인공지능 가속기는 인공 지능 및 기계 학습 응용 프로그램의 연산을 더 빠르게 수행하도록 설계된 하드웨어 가속기이다. 인공지능 가속기 내에서 데이터가 효율적으로 처리되기 위해서는 그 흐름을 제어해야 한다. 데이터의 흐름을 제어하는 방법에 따라 가속기의 면적, 전력, 성능의 차이가 발생하는데, 그 다양한 데이터 흐름 제어방법에 대해 소개한다.

영상인식 및 분류용 인공지능 가속기의 최신 성능평가: MLPerf를 중심으로

  • 서영호;박성호;박장호
    • 방송과미디어
    • /
    • 제25권1호
    • /
    • pp.28-41
    • /
    • 2020
  • 인공지능의 고속화를 위한 인공지능용 혹은 딥러닝용 하드웨어 및 소프트웨어 시스템에 대한 수요가 폭발적으로 증가하고 있다. 또한 딥러닝 모델에 따라 다양한 추론 시스템이 끊임없이 연구되고 소개되고 있다. 최근에는 전세계에서 100개가 넘는 회사들에서 인공지능용 추론 칩을 개발하고 있고, 임베디드 시스템에서 데이터센터 솔루션에 이르기까지 다양한 분야를 위한 것들이 존재한다. 이러한 하드웨어의 개발을 위해서 12개 이상의 소프트웨어 프레임 워크 및 라이브러리가 활용되고 있다. 하드웨어와 소프트웨어가 다양한 만큼 이들을 중립적으로 평가하기가 매우 어려운 실정이다. 따라서 업계 표준의 인공지능을 위한 벤치마킹 및 평가기준이 필요한데, 이러한 요구로 인해 MLPerf 추론이 만들어졌다. MLPerf는 30개 이상의 기업과 200개 이상의 머신러닝 연구자 및 실무자들에 의해 운영되고, 전혀 다른 구조를 갖는 시스템을 비교할 수 있는 일관성 있는 규칙과 방법을 제시한다. MLPerf에 의해 제시된 규칙에 의해 2019년도에 처음으로 다양한 인공지능용 추론 하드웨어가 벤치마킹을 수행했다. 여기에는 14개의 회사에서 600개 이상의 추론 결과를 측정하였으며, 30개가 넘는 시스템이 이러한 추론에 사용되었다. 본 원고에서는 MLPerf의 학습과 추론을 중심으로 하여 최근에 개발된 다양한 회사들의 인공지능용 하드웨어, 즉 가속기 들의 성능을 살펴보고자 한다.

AI 가속기 설계 영역 탐색에 대한 연구 (A Study on Design Space Exploration on AI accelerator)

  • 이동주;백윤흥
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.535-537
    • /
    • 2022
  • AI 가속기는 머신 러닝 및 딥 러닝을 포함한 인공 지능 및 기계 학습 응용 프로그램의 연산을 더 빠르게 수행하도록 설계된 일종의 하드웨어 가속기 또는 컴퓨터 시스템이다. 가속기를 설계하기 위해선 설계 영역 탐색(Design Space Exploration)을 하여야 하고 여러 인공지능 중에서도 합성 곱 신경망(CNN)에 대한 설계 영역 탐색을 소개한다.

독립운용이 가능한 임베디드 인공지능 프로세서 설계 (Design of Stand-alone AI Processor for Embedded System)

  • 조권능;최도영;정영우;이승은
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.600-602
    • /
    • 2021
  • 모바일 산업의 발달과 인공지능 기술에 대한 관심이 높아지면서 임베디드 시스템에 적용 가능한 인공지능 프로세서에 대한 연구가 활발히 진행되고 있다. 임베디드 시스템에서 인공지능을 구현하는 경우 제한된 자원과 소비 전력을 고려한 설계가 필수적이며, 낮은 연산 성능을 보완할 수 있는 전용 가속기를 포함하는 것이 효율적이다. 본 연구는 독립 운용이 가능한 임베디드 인공지능 프로세서를 제안한다. 제안하는 인공지능 프로세서는 거리연산 기반의 경량 인공지능 알고리즘이 적용된 하드웨어 가속기를 포함하며, 프로그래밍 가능한 범용 프로세서와 함께 운용되어 다양한 임베디드 시스템에 적용 가능하다. 인공지능 프로세서는 Verilog HDL을 사용하여 설계되었으며 Field Programmable Gate Array (FPGA)를 통해 기능을 검증하였다.

  • PDF

모바일 디바이스를 위한 소형 CNN 가속기의 마이크로코드 기반 컨트롤러 (Microcode based Controller for Compact CNN Accelerators Aimed at Mobile Devices)

  • 나용석;손현욱;김형원
    • 한국정보통신학회논문지
    • /
    • 제26권3호
    • /
    • pp.355-366
    • /
    • 2022
  • 본 논문은 프로그램 가능한 구조를 사용하여 재구성이 가능하고 저 전력 초소형의 장점을 모두 제공하는 인공지능 가속기를 위한 마이크로코드 기반 뉴럴 네트워크 가속기 컨트롤러를 제안한다. 대상 가속기가 다양한 뉴럴 네트워크 모델을 지원하도록 마이크로코드 컴파일러를 통해 뉴럴 네트워크 모델을 마이크로코드로 변환하여 가속기의 메모리 접근과 모든 연산기를 제어할 수 있다. 200MHz의 System Clock을 기준으로 설계하였으며, YOLOv2-Tiny CNN model을 구동하도록 컨트롤러를 구현하였다. 객체 감지를 위한 VOC 2012 dataset 추론용 컨트롤러를 구현할 경우 137.9ms/image, mask 착용 여부 감지를 위한 mask detection dataset 추론용으로 구현할 경우 99.5ms/image의 detection speed를 달성하였다. 제안된 컨트롤러를 탑재한 가속기를 실리콘칩으로 구현할 때 게이트 카운트는 618,388이며, 이는 CPU core로서 RISC-V (U5-MC2)를 탑재할 경우 대비 약 65.5% 감소한 칩 면적을 제공한다.

최신 인공지능 반도체 및 컴파일러 지원 기술 동향 (Trends in Supporting Technologies for Advanced AI Semiconductors and Compilers)

  • 김용주;하영목;정영준
    • 전자통신동향분석
    • /
    • 제39권5호
    • /
    • pp.1-11
    • /
    • 2024
  • Recent advancements in artificial intelligence (AI) across diverse sectors have been widely supported by developments in AI semiconductors, with NVIDIA graphics processing units leading the market. However, concerns over market diversity and high energy consumption of AI workloads have prompted the development of next-generation AI semiconductors toward improving performance and energy efficiency. We discuss the latest trends in AI semiconductor and compiler technologies, both domestically and internationally. Key local companies, such as SAPEON, Rebellions, and Furiosa AI, and overseas giants, such as Google, Meta, and Tesla, are innovating in this field. Moreover, compiler technologies, such as MLIR, TVM, and XLA, are crucial for optimizing the performance of AI solutions across hardware platforms. Such developments are essential for enhancing AI applications and demand active research. This study offers insights into the current and future landscape of AI semiconductors and compilers, and it provides a foundation for future technological strategies in the AI industry.

구조적 압축을 통한 FPGA 기반 GRU 추론 가속기 설계 (Implementation of FPGA-based Accelerator for GRU Inference with Structured Compression)

  • 채병철
    • 한국정보통신학회논문지
    • /
    • 제26권6호
    • /
    • pp.850-858
    • /
    • 2022
  • 리소스가 제한된 임베디드 장치에 GRU를 배포하기 위해 이 논문은 구조적 압축을 가능하게 하는 재구성 가능한 FPGA 기반 GRU 가속기를 설계한다. 첫째, 조밀한 GRU 모델은 하이브리드 양자화 방식과 구조화된 top-k 프루닝에 의해 크기가 대폭 감소한다. 둘째, 본 연구에서 제시하는 재사용 컴퓨팅 패턴에 의해 외부 메모리 액세스에 대한 에너지 소비가 크게 감소한다. 마지막으로 가속기는 알고리즘-하드웨어 공동 설계 워크플로의 이점을 얻는 구조화된 희소 GRU 모델을 처리할 수 있다. 또한 모든 차원, 시퀀스 길이 및 레이어 수를 사용하여 GRU 모델에 대한 추론 작업을 유연하게 수행할 수 있다. Intel DE1-SoC FPGA 플랫폼에 구현된 제안된 가속기는 일괄 처리가 없는 구조화된 희소 GRU 네트워크에서 45.01 GOPs를 달성하였다. CPU 및 GPU의 구현과 비교할 때 저비용 FPGA 가속기는 대기 시간에서 각각 57배 및 30배, 에너지 효율성에서 300배 및 23.44배 향상을 달성한다. 따라서 제안된 가속기는 실시간 임베디드 애플리케이션에 대한 초기 연구로서 활용, 향후 더 발전될 수 있는 잠재력을 보여준다.

지능형 로봇 부품 기술 동향 (Motor and Sensor Technology for Intelligent Robots)

  • 김혜진;윤호섭
    • 전자통신동향분석
    • /
    • 제22권2호통권104호
    • /
    • pp.58-69
    • /
    • 2007
  • 지능형 로봇은 우리 인간의 삶의 공간으로 한층 접근하고 있으며, 앞으로 미래 산업에 큰 비중을 차지할 것이라 예상된다. 이에 지능형 로봇의 구현에 필수적인 부품 기술을 구동기와 센서 기술을 중심으로 살펴본다. 구동기 기술로는 PMDC, BLDC, 스테핑 모터, 초음파 모터와 최근 연구실을 중심으로 많이 연구되는 인공 근육에 대해 살펴본다. 센서기술로는 가속도 센서, 각속도 센서, 초음파 센서, 청각 센서, 시각 센서, 액티브 비컨 센서, 그리고 촉각 센서를 살펴본다. 부품 기술들의 간단한 원리와 종류 그리고 기술동향을 살펴봄으로써 지능형 로봇 산업에서 중요하게 사용될 부품들을 정리해본다.

클러스터 시스템에서 GPU 사용 통계정보 획득 방안에 대한 연구 (Study on the method of acquiring GPU usage statistics information in cluster system)

  • 권민우;김성준;윤준원;홍태영
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 추계학술발표대회
    • /
    • pp.476-477
    • /
    • 2018
  • 한국과학기술정보연구원에서는 최근 빅데이터, 인공지능에 관한 연구 인프라 수요를 대응하기 위해 슈퍼컴퓨터 4호기 보조 가속기 시스템인 GPU 클러스터를 운영 중에 있다. GPU 클러스터 시스템은 사용자들 간에 효율적인 작업 배분을 위해 SLURM JOB 스케줄러를 이용하고 있다. 본 논문에서는 SLURM JOB 스케줄러를 통해 실행되는 사용자의 작업별 GPU 사용 통계 정보를 획득하는 방안에 대하여 소개한다.

CNN 가속기의 효율적인 데이터 전송을 위한 메모리 데이터 레이아웃 및 DMA 전송기법 연구 (Memory data layout and DMA transfer technique research For efficient data transfer of CNN accelerator)

  • 조석재;박성경;박성정
    • 전기전자학회논문지
    • /
    • 제24권2호
    • /
    • pp.559-569
    • /
    • 2020
  • 딥 러닝 알고리즘 중 하나인 CNN 인공지능 어플리케이션은 하드웨어 측면에서 컨벌루션 레이어의 많은 데이터들을 저장하기 위해 오프 칩 메모리를 사용 하고, DMA를 사용하여 매 데이터 전송 시 프로세서의 부하를 줄여 성능을 향상 시킬 수 있다. 또한 컨벌루션 레이어의 데이터를 가속기의 글로벌 버퍼에 전송되는 순서를 다르게 하여 어플리케이션의 성능의 저하를 줄일 수 있다. 불 연속된 메모리 주소를 가지고 있는 베이직 레이아웃의 경우 SG-DMA를 사용 할 때 ordinary DMA를 사용할 때보다 DMA를 사전 설정하는 부분에서 약 3.4배의 성능향상을 보였고 연속적인 메모리 주소를 가지고 있는 아이디얼 레이아웃의 경우 ordinary DMA 와 SG-DMA를 사용하는 두가지 경우 모두 1396 사이클 정도의 오버헤드를 가졌다. 가장 효율적인 메모리 데이터 레이아웃과 DMA의 조합은 프로세서의 DMA 사전 설정 부하를 약 86 퍼센트까지 감소할 수 있음을 실험을 통해 확인했다.