인공지능 가속기는 인공 지능 및 기계 학습 응용 프로그램의 연산을 더 빠르게 수행하도록 설계된 하드웨어 가속기이다. 인공지능 가속기 내에서 데이터가 효율적으로 처리되기 위해서는 그 흐름을 제어해야 한다. 데이터의 흐름을 제어하는 방법에 따라 가속기의 면적, 전력, 성능의 차이가 발생하는데, 그 다양한 데이터 흐름 제어방법에 대해 소개한다.
인공지능의 고속화를 위한 인공지능용 혹은 딥러닝용 하드웨어 및 소프트웨어 시스템에 대한 수요가 폭발적으로 증가하고 있다. 또한 딥러닝 모델에 따라 다양한 추론 시스템이 끊임없이 연구되고 소개되고 있다. 최근에는 전세계에서 100개가 넘는 회사들에서 인공지능용 추론 칩을 개발하고 있고, 임베디드 시스템에서 데이터센터 솔루션에 이르기까지 다양한 분야를 위한 것들이 존재한다. 이러한 하드웨어의 개발을 위해서 12개 이상의 소프트웨어 프레임 워크 및 라이브러리가 활용되고 있다. 하드웨어와 소프트웨어가 다양한 만큼 이들을 중립적으로 평가하기가 매우 어려운 실정이다. 따라서 업계 표준의 인공지능을 위한 벤치마킹 및 평가기준이 필요한데, 이러한 요구로 인해 MLPerf 추론이 만들어졌다. MLPerf는 30개 이상의 기업과 200개 이상의 머신러닝 연구자 및 실무자들에 의해 운영되고, 전혀 다른 구조를 갖는 시스템을 비교할 수 있는 일관성 있는 규칙과 방법을 제시한다. MLPerf에 의해 제시된 규칙에 의해 2019년도에 처음으로 다양한 인공지능용 추론 하드웨어가 벤치마킹을 수행했다. 여기에는 14개의 회사에서 600개 이상의 추론 결과를 측정하였으며, 30개가 넘는 시스템이 이러한 추론에 사용되었다. 본 원고에서는 MLPerf의 학습과 추론을 중심으로 하여 최근에 개발된 다양한 회사들의 인공지능용 하드웨어, 즉 가속기 들의 성능을 살펴보고자 한다.
AI 가속기는 머신 러닝 및 딥 러닝을 포함한 인공 지능 및 기계 학습 응용 프로그램의 연산을 더 빠르게 수행하도록 설계된 일종의 하드웨어 가속기 또는 컴퓨터 시스템이다. 가속기를 설계하기 위해선 설계 영역 탐색(Design Space Exploration)을 하여야 하고 여러 인공지능 중에서도 합성 곱 신경망(CNN)에 대한 설계 영역 탐색을 소개한다.
모바일 산업의 발달과 인공지능 기술에 대한 관심이 높아지면서 임베디드 시스템에 적용 가능한 인공지능 프로세서에 대한 연구가 활발히 진행되고 있다. 임베디드 시스템에서 인공지능을 구현하는 경우 제한된 자원과 소비 전력을 고려한 설계가 필수적이며, 낮은 연산 성능을 보완할 수 있는 전용 가속기를 포함하는 것이 효율적이다. 본 연구는 독립 운용이 가능한 임베디드 인공지능 프로세서를 제안한다. 제안하는 인공지능 프로세서는 거리연산 기반의 경량 인공지능 알고리즘이 적용된 하드웨어 가속기를 포함하며, 프로그래밍 가능한 범용 프로세서와 함께 운용되어 다양한 임베디드 시스템에 적용 가능하다. 인공지능 프로세서는 Verilog HDL을 사용하여 설계되었으며 Field Programmable Gate Array (FPGA)를 통해 기능을 검증하였다.
본 논문은 프로그램 가능한 구조를 사용하여 재구성이 가능하고 저 전력 초소형의 장점을 모두 제공하는 인공지능 가속기를 위한 마이크로코드 기반 뉴럴 네트워크 가속기 컨트롤러를 제안한다. 대상 가속기가 다양한 뉴럴 네트워크 모델을 지원하도록 마이크로코드 컴파일러를 통해 뉴럴 네트워크 모델을 마이크로코드로 변환하여 가속기의 메모리 접근과 모든 연산기를 제어할 수 있다. 200MHz의 System Clock을 기준으로 설계하였으며, YOLOv2-Tiny CNN model을 구동하도록 컨트롤러를 구현하였다. 객체 감지를 위한 VOC 2012 dataset 추론용 컨트롤러를 구현할 경우 137.9ms/image, mask 착용 여부 감지를 위한 mask detection dataset 추론용으로 구현할 경우 99.5ms/image의 detection speed를 달성하였다. 제안된 컨트롤러를 탑재한 가속기를 실리콘칩으로 구현할 때 게이트 카운트는 618,388이며, 이는 CPU core로서 RISC-V (U5-MC2)를 탑재할 경우 대비 약 65.5% 감소한 칩 면적을 제공한다.
Recent advancements in artificial intelligence (AI) across diverse sectors have been widely supported by developments in AI semiconductors, with NVIDIA graphics processing units leading the market. However, concerns over market diversity and high energy consumption of AI workloads have prompted the development of next-generation AI semiconductors toward improving performance and energy efficiency. We discuss the latest trends in AI semiconductor and compiler technologies, both domestically and internationally. Key local companies, such as SAPEON, Rebellions, and Furiosa AI, and overseas giants, such as Google, Meta, and Tesla, are innovating in this field. Moreover, compiler technologies, such as MLIR, TVM, and XLA, are crucial for optimizing the performance of AI solutions across hardware platforms. Such developments are essential for enhancing AI applications and demand active research. This study offers insights into the current and future landscape of AI semiconductors and compilers, and it provides a foundation for future technological strategies in the AI industry.
리소스가 제한된 임베디드 장치에 GRU를 배포하기 위해 이 논문은 구조적 압축을 가능하게 하는 재구성 가능한 FPGA 기반 GRU 가속기를 설계한다. 첫째, 조밀한 GRU 모델은 하이브리드 양자화 방식과 구조화된 top-k 프루닝에 의해 크기가 대폭 감소한다. 둘째, 본 연구에서 제시하는 재사용 컴퓨팅 패턴에 의해 외부 메모리 액세스에 대한 에너지 소비가 크게 감소한다. 마지막으로 가속기는 알고리즘-하드웨어 공동 설계 워크플로의 이점을 얻는 구조화된 희소 GRU 모델을 처리할 수 있다. 또한 모든 차원, 시퀀스 길이 및 레이어 수를 사용하여 GRU 모델에 대한 추론 작업을 유연하게 수행할 수 있다. Intel DE1-SoC FPGA 플랫폼에 구현된 제안된 가속기는 일괄 처리가 없는 구조화된 희소 GRU 네트워크에서 45.01 GOPs를 달성하였다. CPU 및 GPU의 구현과 비교할 때 저비용 FPGA 가속기는 대기 시간에서 각각 57배 및 30배, 에너지 효율성에서 300배 및 23.44배 향상을 달성한다. 따라서 제안된 가속기는 실시간 임베디드 애플리케이션에 대한 초기 연구로서 활용, 향후 더 발전될 수 있는 잠재력을 보여준다.
지능형 로봇은 우리 인간의 삶의 공간으로 한층 접근하고 있으며, 앞으로 미래 산업에 큰 비중을 차지할 것이라 예상된다. 이에 지능형 로봇의 구현에 필수적인 부품 기술을 구동기와 센서 기술을 중심으로 살펴본다. 구동기 기술로는 PMDC, BLDC, 스테핑 모터, 초음파 모터와 최근 연구실을 중심으로 많이 연구되는 인공 근육에 대해 살펴본다. 센서기술로는 가속도 센서, 각속도 센서, 초음파 센서, 청각 센서, 시각 센서, 액티브 비컨 센서, 그리고 촉각 센서를 살펴본다. 부품 기술들의 간단한 원리와 종류 그리고 기술동향을 살펴봄으로써 지능형 로봇 산업에서 중요하게 사용될 부품들을 정리해본다.
한국과학기술정보연구원에서는 최근 빅데이터, 인공지능에 관한 연구 인프라 수요를 대응하기 위해 슈퍼컴퓨터 4호기 보조 가속기 시스템인 GPU 클러스터를 운영 중에 있다. GPU 클러스터 시스템은 사용자들 간에 효율적인 작업 배분을 위해 SLURM JOB 스케줄러를 이용하고 있다. 본 논문에서는 SLURM JOB 스케줄러를 통해 실행되는 사용자의 작업별 GPU 사용 통계 정보를 획득하는 방안에 대하여 소개한다.
딥 러닝 알고리즘 중 하나인 CNN 인공지능 어플리케이션은 하드웨어 측면에서 컨벌루션 레이어의 많은 데이터들을 저장하기 위해 오프 칩 메모리를 사용 하고, DMA를 사용하여 매 데이터 전송 시 프로세서의 부하를 줄여 성능을 향상 시킬 수 있다. 또한 컨벌루션 레이어의 데이터를 가속기의 글로벌 버퍼에 전송되는 순서를 다르게 하여 어플리케이션의 성능의 저하를 줄일 수 있다. 불 연속된 메모리 주소를 가지고 있는 베이직 레이아웃의 경우 SG-DMA를 사용 할 때 ordinary DMA를 사용할 때보다 DMA를 사전 설정하는 부분에서 약 3.4배의 성능향상을 보였고 연속적인 메모리 주소를 가지고 있는 아이디얼 레이아웃의 경우 ordinary DMA 와 SG-DMA를 사용하는 두가지 경우 모두 1396 사이클 정도의 오버헤드를 가졌다. 가장 효율적인 메모리 데이터 레이아웃과 DMA의 조합은 프로세서의 DMA 사전 설정 부하를 약 86 퍼센트까지 감소할 수 있음을 실험을 통해 확인했다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.