• Title/Summary/Keyword: 인공지능모델

Search Result 1,597, Processing Time 0.034 seconds

An Artificial Intelligence Ethics Education Model for Practical Power Strength (실천력 강화를 위한 인공지능 윤리 교육 모델)

  • Bae, Jinah;Lee, Jeonghun;Cho, Jungwon
    • Journal of Industrial Convergence
    • /
    • v.20 no.5
    • /
    • pp.83-92
    • /
    • 2022
  • As cases of social and ethical problems caused by artificial intelligence technology have occurred, artificial intelligence ethics are drawing attention along with social interest in the risks and side effects of artificial intelligence. Artificial intelligence ethics should not just be known and felt, but should be actionable and practiced. Therefore, this study proposes an artificial intelligence ethics education model to strengthen the practical ability of artificial intelligence ethics. The artificial intelligence ethics education model derived educational goals and problem-solving processes using artificial intelligence through existing research analysis, applied teaching and learning methods to strengthen practical skills, and compared and analyzed the existing artificial intelligence education model. The artificial intelligence ethics education model proposed in this paper aims to cultivate computing thinking skills and strengthen the practical ability of artificial intelligence ethics. To this end, the problem-solving process using artificial intelligence was presented in six stages, and artificial intelligence ethical factors reflecting the characteristics of artificial intelligence were derived and applied to the problem-solving process. In addition, it was designed to unconsciously check the ethical standards of artificial intelligence through preand post-evaluation of artificial intelligence ethics and apply learner-centered education and learning methods to make learners' ethical practices a habit. The artificial intelligence ethics education model developed through this study is expected to be artificial intelligence education that leads to practice by developing computing thinking skills.

Educational Model for Artificial Intelligence Convergence Education (예비 교사의 인공지능 융합 수업 전문성 함양을 위한 교육 모델 제안)

  • Seong-Won Kim
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.229-231
    • /
    • 2023
  • 테크놀로지의 발달에 따라 수업에서 테크놀로지의 도입이 증가하고 있다. 테크놀로지는 학교 현장에 도입되어서, 교수-학습 형태의 변화와 교육 환경의 혁신을 이끌고 있다. 이에 따라 수업에서 테크놀로지 중요성은 더욱 증가하였으며, 예비 교사의 교육 모델에서 테크놀로지 지식을 함양하기 위한 노력이 이어졌다. 이에 따라 Mishra and Koehler(2006)의 TPACK 모델을 활용한 교육이 활발하게 이루어지고 있다. 본 연구에서는 TPACK 모델을 활용하여 예비 교사의 인공지능 융합 수업 전문성을 함양하기 위한 교육 모델을 개발하였다. 개발한 교육 모델은 브레인스토밍, 협력, 탐색(TPACK, AI, 교육과정, 교육적 맥락, 수업 사례), 수업 설계, 마이크로티칭, 수업 비평, 수업 성찰을 포함하였다. 본 연구에서 개발한 인공지능 융합 TPACK 교육 모델을 바탕으로 예비 교사의 인공지능 융합 수업 전문성 변화를 분석하는 후속 연구가 필요하다.

  • PDF

Development of a Stock Volatility Detection Model Using Artificial Intelligence (인공지능 기반 주식시장 변동성 이상탐지모델 개발)

  • HyunJung Kim;Heonchang Yu
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.576-579
    • /
    • 2024
  • 경제 위기 대비를 위해 인공지능을 활용한 주식시장 변동성 이상을 탐지하는 목적을 가지고 있다. 글로벌 이슈와 경제 위기 대비를 위해 주식시장 변동성 예측의 중요성이 부각되고 있으며, 기존의 주식시장 변동성 지수인 VIX 의 한계로 인해 더 복잡한 모델 및 인공지능을 활용한 연구에 관심이 집중되고 있다. 기존의 주식시장 변동성 예측에 관한 연구들은 통계적인 방법을 사용했으며 인공지능을 이용한 연구 또한 대부분 이상치 구간을 표시하여 예측을 목표로 하고 있으나 이러한 접근법은 라벨이 있는 데이터 수집 어려움, 클래스 불균형 문제가 있다. 본 연구는 인공지능을 활용한 주식시장 변동성 탐지에 기여하고 지도 학습 방식 대신 비지도 학습 기반의 이상탐지모델을 사용하여 주식시장 변동성을 예측하는 새로운 방법론을 제안한다. 본 연구에서 개발한 인공지능 모델은 IsolationForest 모델을 활용하며, 시계열 데이터를 전처리한 후 정상성을 확보하는 등의 과정을 거친다. 실험 결과로 인공지능 모델이 주요 경제이슈를 이상치로 검출하는 성능을 확인하였으며 재현율 약 93.6%, 정밀도 100%로 높은 성능을 달성했다.

Personal Information life Cycle Model Considering the Learning Cha racteristics of Artificial Intelligence (인공지능의 학습 특성을 고려한 개인정보 라이프 사이클 모델)

  • Jaeyoung Jang;Jong-Min Kim
    • Convergence Security Journal
    • /
    • v.24 no.2
    • /
    • pp.47-53
    • /
    • 2024
  • The traditional personal information life cycle model, primarily tailored to conventional systems, is inherently unsuitable for comprehending the nuances of personal information flow within artificial intelligence frameworks and for formulating effective protective measures. Therefore, this study endeavors to introduce a personal information life cycle model specifically designed for artificial intelligence (AI). This paper presents a personal information life cycle model suitable for artificial intelligence, which includes the stages of collection, retention, learning, use, and destruction/suspension, along with the re-learning process for destruction/suspension. Subsequently, we compare the performance of these existing models (such aspersonal information impact assessment and the ISMS-P model) with the newly proposed model. This underscores the superiority of our proposed model in comprehensively understanding the personal information flow in AI and establishing robust protective measures.

Proposal of allowable prediction error range for judging the adequacy of groundwater level simulation results of artificial intelligence models (인공지능 모델의 지하수위 모의결과 적절성 판단을 위한 허용가능 예측오차 범위 제안)

  • Shin, Mun-Ju;Ryu, Ho-Yoon;Kang, Su-Yeon;Lee, Jeong-Han;Kang, Kyung Goo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.449-449
    • /
    • 2022
  • 제주도는 용수의 대부분을 지하수에 의존하므로 지하수위의 예측 및 관리는 매우 중요한 사항이다. 제주도의 지층은 화산활동에 의한 현무암이 겹겹이 쌓여있는 형태를 나타내며 육지의 지층구조와 매우 다른 복잡한 형태를 나타낸다. 이에 따라 제주도 지하수위의 예측은 매우 난해하며, 최근에는 딥러닝 인공지능 모델을 활용하여 지하수위를 예측하는 연구사례가 증가하고 있다. 기존의 연구들은 인공지능 모델들이 지하수위를 적절히 예측한다고 보고하고 있으나 예측의 적절성에 대한 판단기준을 제시하지 못하였으므로 이에 대한 명확한 제시가 필요하다. 본 연구의 목표는 인공지능을 활용한 지하수위 예측오차가 허용 가능한지 판단할 수 있는 기준을 제시함에 있다. 이를 위해 전 세계의 과거 20년 동안 관련 연구결과들을 수집 및 분석하였으며, 분석 결과 인공지능 모델의 지하수위 예측오차는 지하수위 변동성이 큰 지역일수록 증가하는 것을 확인하였다. 이것은 지하수위의 변동형태가 크고 복잡할수록 인공지능 모델의 지하수위 예측성능은 낮아진다는 것을 의미한다. 이 관계를 명확하게 나타내기 위해 지하수위 최대변동폭과 평균제곱근오차 및 최대오차와의 관계를 선형회귀식으로 도출하여 허용가능한 예측오차 기준을 제시하였다. 그리고 기존 연구들에서 제시한 Nash-Sutcliffe 효율성지수와 결정계수를 분석하여 선형회귀식에 의한 기준을 보완할 수 있는 추가적인 기준을 제시하였다. 본 연구에서 제시한 인공지능 모델에 의한 지하수위 예측결과의 적절성 판단기준은 향후 지속적으로 증가하는 인공지능 예측연구에 유용하게 사용될 수 있다.

  • PDF

Evidence Extraction Method for Machine Reading Comprehension Model using Recursive Neural Network Decoder (디코더를 활용한 기계독해 모델의 근거 추출 방법)

  • Kyubeen Han;Youngjin Jang;Harksoo Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.609-614
    • /
    • 2023
  • 최근 인공지능 시스템이 발전함에 따라 사람보다 높은 성능을 보이고 있다. 또한 전문 지식에 특화된 분야(질병 진단, 법률, 교육 등)에도 적용되고 있지만 이러한 전문 지식 분야는 정확한 판단이 중요하다. 이로 인해 인공지능 모델의 결정에 대한 근거나 해석의 중요성이 대두되었다. 이를 위해 설명 가능한 인공지능 연구인 XAI가 발전하게 되었다. 이에 착안해 본 논문에서는 기계독해 프레임워크에 순환 신경망 디코더를 활용하여 정답 뿐만 아니라 예측에 대한 근거를 추출하고자 한다. 실험 결과, 모델의 예측 답변이 근거 문장 내 등장하는지에 대한 실험과 분석을 수행하였다. 이를 통해 모델이 추론 과정에서 예측 근거 문장을 기반으로 정답을 추론한다는 것을 확인할 수 있었다.

  • PDF

A Research on Explainability of the Medical AI Model based on Attention and Attention Flow Graph (어텐션과 어텐션 흐름 그래프를 활용한 의료 인공지능 모델의 설명가능성 연구)

  • Lee, You-Jin;Chae, Dong-Kyu
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.520-522
    • /
    • 2022
  • 의료 인공지능은 특정 진단에서 높은 정확도를 보이지만 모델의 신뢰성 문제로 인해 활발하게 쓰이지 못하고 있다. 이에 따라 인공지능 모델의 진단에 대한 원인 설명의 필요성이 대두되었고 설명가능한 의료 인공지능에 관한 연구가 활발히 진행되고 있다. 하지만 MRI 등 의료 영상 인공지능 분야에서 주로 진행되고 있으며, 이미지 형태가 아닌 전자의무기록 데이터 (Electronic Health Record, EHR) 를 기반으로 한 모델의 설명가능성 연구는 EHR 데이터 자체의 복잡성 때문에 활발하게 진행 되지 않고 있다. 본 논문에서는 전자의무기록 데이터인 MIMIC-III (Medical Information Mart for Intensive Care) 를 전처리 및 그래프로 표현하고, GCT (Graph Convolutional Transformer) 모델을 학습시켰다. 학습 후, 어텐션 흐름 그래프를 시각화해서 모델의 예측에 대한 직관적인 설명을 제공한다.

심혈관 시뮬레이션 데이터 기반의 심혈관 혈류역학 예측용 인공지능 개발

  • Lee, Gyeong-Eun;Kim, Jung-Jae;Lee, Seo-Ho;Sin, Seong-Ung;Bang, Hyeon-Gi;Kim, Gi-Tae;Ryu, A-Jin;Lee, Jong-Ho;Kim, Gi-Tae;Park, Seon-Yeol;Lee, Yeong-Gwon;Sim, Eun-Bo
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.712-714
    • /
    • 2017
  • 미병의 예방과 관리의 중요성이 거론되고 있으나, 미병에 대한 분류나 진단을 위한 확고한 근거가 미약한 상황으로서 미병 진단 인자 분류를 위한 생리시스템 모델 개발이 필요한 시점이다. 본 연구의 목적은 개발한 생리학적 모델이 미병 단계를 구별하는데 효과 및 유용성이 있는지를 임상 검증하기 위하여 생리학적 모델 인공지능 시뮬레이션을 개발하고자 함이다. 인공지능 계산은 3층으로 구성된 네트워크를 이용하였으며 각 층은 30개의 neuron들로 구성하였다. 인공지능망의 입력 값은 나이, 수축기 혈압, 이완기 혈압, 심박수 값 (입력 값 4개)이고 출력 값은 혈관 저항값인 Ra이다. 머신러닝 차수를 높이면서 인공지능을 사용하지 않은 생리적 모델로부터 도출된 결과와 인공지능을 통하여 계산된 결과를 비교하였다. 개발된 인공지능계산을 이용한 생리시스템 모델은 대량의 표본집단에서 임상 검증에 기여할 것이다.

  • PDF

KorSciDeBERTa: A Pre-trained Language Model Based on DeBERTa for Korean Science and Technology Domains (KorSciDeBERTa: 한국어 과학기술 분야를 위한 DeBERTa 기반 사전학습 언어모델)

  • Seongchan Kim;Kyung-min Kim;Eunhui Kim;Minho Lee;Seungwoo Lee;Myung-Seok Choi
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.704-706
    • /
    • 2023
  • 이 논문에서는 과학기술분야 특화 한국어 사전학습 언어모델인 KorSciDeBERTa를 소개한다. DeBERTa Base 모델을 기반으로 약 146GB의 한국어 논문, 특허 및 보고서 등을 학습하였으며 모델의 총 파라미터의 수는 180M이다. 논문의 연구분야 분류 태스크로 성능을 평가하여 사전학습모델의 유용성을 평가하였다. 구축된 사전학습 언어모델은 한국어 과학기술 분야의 여러 자연어처리 태스크의 성능향상에 활용될 것으로 기대된다.

  • PDF

A Development of Augmented Intelligence Model Sharing for AI Modular Robot Application in Cloud Environment (클라우드 환경에서 인공지능 모듈 기반 로봇 응용을 위한 증강 지능 모델 공유 기술 개발)

  • Jang, Choulsoo;Song, ByoungYoul;Jeong, YoungSook
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.129-131
    • /
    • 2022
  • 본 논문에서는 다양한 인공지능을 모듈화하고 모듈들을 서로 결합하여 서비스를 제공할 수 있는 지능형 서비스 로봇에서, 인공지능 모듈들을 라이브러리 간의 의존성을 해소하기 위한 방법 중 하나인 가상 머신의 일종인 도커(Docker)를 활용하여 컨테이너화하여 사용할 때, 인공지능 모듈 내부에서 사용하는 신경망 데이터에 해당하는 지능 모델에 대해 버전 관리를 수행하면서 클라우드 등 외부 서버를 이용하여 증강시킨 지능 모델을 공유하는 기술 개발에 대해 설명한다.