목적: 내 외측 측두엽간질의 감별은 중요하고 F-18-FDG PET이 도움을 주나 성능이 아주 우수하지는 않다. 이 연구에서는 수술과 수술 후 추적 병리소견으로 확진한 내측성 또는 외측성 측두엽간질 환자의 F-18-FDG PET영상을 후향적으로 조사하여 내측 및 외측 측두엽 대사 감소 양상을 추출하고 내측성과 외측성 간질을 감별하기 위한 인공신경회로망을 이용한 감별시스템을 개발하였으며 판독 성능을 핵의학전문가와 비교하였다. 대상 및 방법 : 수술로 확진한 내측성 또는 외측성 측두엽간질 환자 113명(좌 우측 내측성 측두엽간질 각 41, 42명, 좌 우측 외측성 측두엽간질 각 14, 16명)의 뇌 FDG PET을 대상으로 하였다. 모든 PET 영상을 PET 표준지도에 공간정규화하였으며 표준지도에서 추출한 뇌실질 영역의 평균 화소 값이 100이 되도록 계수정규화를 하였다. 표준지도에 미리 정의한34개 영역에서 평균 계수 값을 추출하였으며 마주보는 17개 영역간의 비대칭계수와 내측 및 외측 측두엽간의 비대칭계수를 구하여 신경회로망 시스템의 입력으로 넣었다. 신경회로망 시스템은 세 개의 독립적인 다층 퍼셉트론으로 구성하였다. 첫 번째 퍼셉트론은 간질 원인병소의 편측화(우측 또는 좌측)를 판단하게 하였다. 다른 두개의 퍼셉트론은 우측 또는 좌측 측두엽간질로 나뉘어진 입력 패턴들을 각각 내측성 또는 외측성 측두엽간질로 구분하는 역할을 하게 하였다. 신경회로망 시스템의 감별 성능을 평가하기 위하여 각 환자군에서 무작위로 8명의 PET 영상을 학습군으로 선정하여 신경회로망을 학습시켰으며 나머지 총 81명의 영상으로 신경망 시스템의 진단 정확성을 평가하였다. 이러한 무작위 실험을 50번 시행하여 얻은 신경회로망 시스템의 출력과 진단명과의 일치도를 핵의학 의사의 판독결과와 비교하였다. 핵의학 의사의 판독은 신경회로망과 동일한 조건 하에서 시행되도록 하기 위하여 각 환자가 측두엽간질환자라는 정보이외에는 어떠한 다른 임상정보도 모르는 상태에서 각 환자를 좌측 또는 우측 내측성 측두엽간질이나 좌측 또는 우측 외측성 측두엽간질 중 하나로 감별하도록 하였다. 결과: 내측 또는 외측 측두엽에 대한 최종 국소화가 정확했는지 여부에 관계없이 간질병소가 속한 뇌반구가 좌측인지 우측인지를 맞게 판단하였으면 편측화에 성공한 것으로 보았을 때 신경회로망과 핵의학 전문가가 모두 평균 90% 정도의 높은 편측화 성공률을 보였다. 편측화는 물론 간질병소가 내측에 있는지 외측에 있는지 여부를 정확하게 판단한 국소화 성공률 또한 신경회로망(59%)과 핵의학 전문가(72%)의 진단 성적이 거의 다르지 않았다. 결론: 이 연구에서 개발한 간질병소 국소화를 위한 신경회로망 시스템은 측두엽간질 감별 진단에 도움이 될 것으로 기대된다.
이동통신에서는 송수신이 이루어지는 전파환경에 따라 직접파와 다중경로에 기인한 간접파에 의한 페이딩, 잡음, 간섭 등의 영향을 받게 된다. 이 논문에서는 복잡하고 다양한 유형의 수신신호 중 원하는 신호정보를 정확히 추출하기 위해 인공신경회로망 (ANN:Artivicial Neural Network)을 이용한다. 인공 신경회로망의 하나인 단층 퍼셉트론을 이용한 검파기를 제안하고, QPSK 변조방식을 이용하여 시뮬레이션을 행하고, 결과 분석을 통해 제안 시스템의 활용 가능성을 확인하다.
Fault diagnosis of an assembled small motor relies usually on human experts hearing ability. The quality of diagnosis depends, however, heavily on physical conditions of the human experts. A fault diagnosis system for assembled small motors is developed using artificial neural network (ANN) in this paper. It is consisted of sound sampling device and fault diagnosis software package. Six parameters are defined to characterize the sampled sound waves. The Levenberg-Marquardt Backpropagation (LMBP) Algorithm is used to diagnose the fault of assembled small motors. Experimental results for more than two hundred small motors verify the performance of the developed system.
In resistance spot welding process, size of molten nuggest have been utilized to assess the integrity of the weld quality. However real-time monitoring of the nugget size is an extremely difficult problem. This paper describes the design of an artificial neural networks(ANN) estimator to predict the nugget size for on-line use of weld quality monitoring. The main task of the ANN estimator is to realize the mapping characteristics from the sampled dynamic resistance signal to the actual negget size through training. The structure of the ANN estimator including the number of hidden layers and nodes in a layer is determined by an estimation error analysis. A series of welding experiments are performed to assess the performance of the ANN estimator. The results are quite promissing in that real-time estimation of the invisible nugget size can be achieved by analyzing the dynamic resistance signal without any conventional destructive testing of welds.
The PLS(Partial Least Square) and ANN(Artificial Neural Network) were introduced to develop the soluble solids content prediction model of apples which is followed by making a subsequent selection of photosensor. For the optimal PLS model, number of factors needed for spectrum analysis were increased until the convergence of prediction residual error sum of squares. Analysis has shown that even part of the overall wavelength with no pretreatment may turn out better performing. The best PLS model was found in the 800 to 1,100nm wavelength region without pretreatment of second derivation, having $R^2$=0.9236, bias= -0.0198bx, SEP=0.2527bx for unknown samples. On the other hand, for the ANN model the second derivation led to higher performance. On partial range of 800 to 1,100nm wavelengh region, prediction model with second derivation for unknown samples reached $R^2$=0.9177, SEP=0.2903bx in contrast to $R^2$=0.7507, SEP =0.4622bx without pretreatment.
There have been many research works for the indirect cutting force measurement in machining process, which deal with the case of one-axis cutting process. In multi-axis cutting process, the main difficulties to estimate the cutting forces occur when the feed direction is reversed. This paper presents the indirect cutting force measurement method in contour NC milling processes by using current signals of servo motors. An artificial neural network (ANN) system are suggested. An artificial neural network(ANN) system is also implemented with a training set of experimental cutting data to measure cutting force indirectly. The input variables of the ANN system are the motor currents and the feedrates of x and y-axis servo motors, and output variable is the cutting force of each axis. A series of experimental works on the circular interpolated contour milling process with the path of a complete circle has been performed. It is concluded that by comparing the ANN system with a dynamometer measuring cutting force directil, the ANN system has a good performance.
생산품을 제조하는 과정에서 처리 시간에 따른 제조 기계를 최적의 수로 결정함으로서 공정 과정에서 비효율적인 제조 기계의 활용 비율을 줄일 수 있으며, 이는 공정 과정의 비용을 최소화할 수 있는 방법 중에 하나이다. 본 논문에서는 핸드폰에 사용되는 여러 가지 모델의 배터리를 생산하는 공장의 작업 과정을 조사하고, 일정하기 않은 처리 시간과 작업에 필요한 제조 기계를 조사하였다. 이를 인공 신경망(ANN)의 역전파 알고리즘을 이용하여 생산현장에서 효율적인 처리 시간과 공정 과정에서 생산에 적합한 기계의 수를 최적화시키는 방법을 제안한다.
고온, 고압의 원자력 배관 누설 판별을 위해 음향방출기법(AE)을 이용한 누설감지 시스템인 ALMS 기법이 적용되고 있다. 이 시스템은 단지 AE 센서로 전해진 신호의 RMS값을 이용하여 누설의 유무만을 판단할 뿐, 누설 발생시 누설부의 크기나 형태를 평가하는 것에는 어려움이 있었다. 따라서 본 논문에서는 이러한 문제를 해결하기 위하여 AE센서와 가속도센서를 동시에 이용한 이중 센서 시스템을 제안하였다. 빠른 학습 속도와 정확성을 위해 Levenberg-Marquardt 학습 알고리즘을 이용한 인공신경회로망을 적용시키고, 이를 통해 신뢰성 있는 분석 결과를 얻을 수 있다. 배관내 압력과 누설부의 크기와 모양에 따른 실험신호들을 학습시키고 그 판별 정확성을 확인하였다. 추가적으로 배관 두께에 따라 발생하는 파(wave)의 종류와 특성이 달라지는 것을 이론과 실험을 통하여 알아보았다.
This paper Proposes a new method of on-line estimation for rotor resistance of the induction motor in the indirect vector controlled drive, using artificial neural network (ANN). The back propagation algorithm is used for training of the neural networks. The error between the desired state variable of an induction motor and actual state variable of a neural network model is back propagated to adjust the weight of a neural network model, so that the actual state variable tracks the desired value. The performance of rotor resistance estimator and torque and flux responses of drive, together with these estimators, are investigated variations rotor resistance from their nominal values. The rotor resistance are estimated analytically, using the proposed ANN in a vector controlled induction motor drive.
In GMA welding processes, bead contour and penetration patterns are criterion to estimate weld quality. Bead geometry is commonly defined with width, height and depth. When weaving is taken into account, selection of welding conditions is known to be difficult. Thus, empirical or trial-and-error method are usually introduced. This study examined the correlation of welding process variables including weaving parameters with bead geometry using srtificial neural networks(ANN). The main task of the Ann estimator is to realize the mapping characteristics from the sampled welding process variables to the actual bead geometry through training. After the neural network model is constructed, welding process variables for desired bead geometry is selected by inverse model. Experimental varification of the inverse model is conducted through actual welding.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.