• 제목/요약/키워드: 인공신경회로망(ANN)

검색결과 23건 처리시간 0.03초

인공신경회로망을 이용한 뇌 F-18-FDG PET 자동 해석: 내.외측 측두엽간질의 감별 (Automatic Interpretation of F-18-FDG Brain PET Using Artificial Neural Network: Discrimination of Medial and Lateral Temporal Lobe Epilepsy)

  • 이재성;이동수;김석기;박광석;이상건;정준기;이명철
    • 대한핵의학회지
    • /
    • 제38권3호
    • /
    • pp.233-240
    • /
    • 2004
  • 목적: 내 외측 측두엽간질의 감별은 중요하고 F-18-FDG PET이 도움을 주나 성능이 아주 우수하지는 않다. 이 연구에서는 수술과 수술 후 추적 병리소견으로 확진한 내측성 또는 외측성 측두엽간질 환자의 F-18-FDG PET영상을 후향적으로 조사하여 내측 및 외측 측두엽 대사 감소 양상을 추출하고 내측성과 외측성 간질을 감별하기 위한 인공신경회로망을 이용한 감별시스템을 개발하였으며 판독 성능을 핵의학전문가와 비교하였다. 대상 및 방법 : 수술로 확진한 내측성 또는 외측성 측두엽간질 환자 113명(좌 우측 내측성 측두엽간질 각 41, 42명, 좌 우측 외측성 측두엽간질 각 14, 16명)의 뇌 FDG PET을 대상으로 하였다. 모든 PET 영상을 PET 표준지도에 공간정규화하였으며 표준지도에서 추출한 뇌실질 영역의 평균 화소 값이 100이 되도록 계수정규화를 하였다. 표준지도에 미리 정의한34개 영역에서 평균 계수 값을 추출하였으며 마주보는 17개 영역간의 비대칭계수와 내측 및 외측 측두엽간의 비대칭계수를 구하여 신경회로망 시스템의 입력으로 넣었다. 신경회로망 시스템은 세 개의 독립적인 다층 퍼셉트론으로 구성하였다. 첫 번째 퍼셉트론은 간질 원인병소의 편측화(우측 또는 좌측)를 판단하게 하였다. 다른 두개의 퍼셉트론은 우측 또는 좌측 측두엽간질로 나뉘어진 입력 패턴들을 각각 내측성 또는 외측성 측두엽간질로 구분하는 역할을 하게 하였다. 신경회로망 시스템의 감별 성능을 평가하기 위하여 각 환자군에서 무작위로 8명의 PET 영상을 학습군으로 선정하여 신경회로망을 학습시켰으며 나머지 총 81명의 영상으로 신경망 시스템의 진단 정확성을 평가하였다. 이러한 무작위 실험을 50번 시행하여 얻은 신경회로망 시스템의 출력과 진단명과의 일치도를 핵의학 의사의 판독결과와 비교하였다. 핵의학 의사의 판독은 신경회로망과 동일한 조건 하에서 시행되도록 하기 위하여 각 환자가 측두엽간질환자라는 정보이외에는 어떠한 다른 임상정보도 모르는 상태에서 각 환자를 좌측 또는 우측 내측성 측두엽간질이나 좌측 또는 우측 외측성 측두엽간질 중 하나로 감별하도록 하였다. 결과: 내측 또는 외측 측두엽에 대한 최종 국소화가 정확했는지 여부에 관계없이 간질병소가 속한 뇌반구가 좌측인지 우측인지를 맞게 판단하였으면 편측화에 성공한 것으로 보았을 때 신경회로망과 핵의학 전문가가 모두 평균 90% 정도의 높은 편측화 성공률을 보였다. 편측화는 물론 간질병소가 내측에 있는지 외측에 있는지 여부를 정확하게 판단한 국소화 성공률 또한 신경회로망(59%)과 핵의학 전문가(72%)의 진단 성적이 거의 다르지 않았다. 결론: 이 연구에서 개발한 간질병소 국소화를 위한 신경회로망 시스템은 측두엽간질 감별 진단에 도움이 될 것으로 기대된다.

단층 퍼셉트론을 이용한 QPSK 신호의 검파 (A Detection for Signal using Single Layer Perceptron)

  • 조순계;최형기;김종교
    • 한국음향학회지
    • /
    • 제17권3호
    • /
    • pp.72-77
    • /
    • 1998
  • 이동통신에서는 송수신이 이루어지는 전파환경에 따라 직접파와 다중경로에 기인한 간접파에 의한 페이딩, 잡음, 간섭 등의 영향을 받게 된다. 이 논문에서는 복잡하고 다양한 유형의 수신신호 중 원하는 신호정보를 정확히 추출하기 위해 인공신경회로망 (ANN:Artivicial Neural Network)을 이용한다. 인공 신경회로망의 하나인 단층 퍼셉트론을 이용한 검파기를 제안하고, QPSK 변조방식을 이용하여 시뮬레이션을 행하고, 결과 분석을 통해 제안 시스템의 활용 가능성을 확인하다.

  • PDF

인공신경회로망을 이용한 소형 모터의 조립 불량 판별 시스템 개발 (Development of A Fault Diagnosis System for Assembled Small Motors Using ANN)

  • 이상민;조중선
    • 한국정밀공학회지
    • /
    • 제18권11호
    • /
    • pp.124-131
    • /
    • 2001
  • Fault diagnosis of an assembled small motor relies usually on human experts hearing ability. The quality of diagnosis depends, however, heavily on physical conditions of the human experts. A fault diagnosis system for assembled small motors is developed using artificial neural network (ANN) in this paper. It is consisted of sound sampling device and fault diagnosis software package. Six parameters are defined to characterize the sampled sound waves. The Levenberg-Marquardt Backpropagation (LMBP) Algorithm is used to diagnose the fault of assembled small motors. Experimental results for more than two hundred small motors verify the performance of the developed system.

  • PDF

저항 점용접에서 인공신경회로망을 이용한 용융부 추정에 관한 연구 (Estimation of Nugget Size in Resistance Spot Welding Processes Using Artificial Neural Networks)

  • 최용범;장희석;조형석
    • 대한기계학회논문집
    • /
    • 제17권2호
    • /
    • pp.393-406
    • /
    • 1993
  • In resistance spot welding process, size of molten nuggest have been utilized to assess the integrity of the weld quality. However real-time monitoring of the nugget size is an extremely difficult problem. This paper describes the design of an artificial neural networks(ANN) estimator to predict the nugget size for on-line use of weld quality monitoring. The main task of the ANN estimator is to realize the mapping characteristics from the sampled dynamic resistance signal to the actual negget size through training. The structure of the ANN estimator including the number of hidden layers and nodes in a layer is determined by an estimation error analysis. A series of welding experiments are performed to assess the performance of the ANN estimator. The results are quite promissing in that real-time estimation of the invisible nugget size can be achieved by analyzing the dynamic resistance signal without any conventional destructive testing of welds.

근적외선을 이용한 사과의 당도예측 (II) - 부분최소제곱 및 인공신경회로망 모델 - (Predicting the Soluble Solids of Apples by Near Infrared Spectroscopy (II) - PLS and ANN Models -)

  • 이강진;;;노상하
    • Journal of Biosystems Engineering
    • /
    • 제23권6호
    • /
    • pp.571-582
    • /
    • 1998
  • The PLS(Partial Least Square) and ANN(Artificial Neural Network) were introduced to develop the soluble solids content prediction model of apples which is followed by making a subsequent selection of photosensor. For the optimal PLS model, number of factors needed for spectrum analysis were increased until the convergence of prediction residual error sum of squares. Analysis has shown that even part of the overall wavelength with no pretreatment may turn out better performing. The best PLS model was found in the 800 to 1,100nm wavelength region without pretreatment of second derivation, having $R^2$=0.9236, bias= -0.0198bx, SEP=0.2527bx for unknown samples. On the other hand, for the ANN model the second derivation led to higher performance. On partial range of 800 to 1,100nm wavelengh region, prediction model with second derivation for unknown samples reached $R^2$=0.9177, SEP=0.2903bx in contrast to $R^2$=0.7507, SEP =0.4622bx without pretreatment.

  • PDF

인공 신경망을 이용한 절삭력 간접 측정 (Indirect Cutting Force Estimation Using Artificial Neural Network)

  • 최지현;김종원
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.1054-1058
    • /
    • 1995
  • There have been many research works for the indirect cutting force measurement in machining process, which deal with the case of one-axis cutting process. In multi-axis cutting process, the main difficulties to estimate the cutting forces occur when the feed direction is reversed. This paper presents the indirect cutting force measurement method in contour NC milling processes by using current signals of servo motors. An artificial neural network (ANN) system are suggested. An artificial neural network(ANN) system is also implemented with a training set of experimental cutting data to measure cutting force indirectly. The input variables of the ANN system are the motor currents and the feedrates of x and y-axis servo motors, and output variable is the cutting force of each axis. A series of experimental works on the circular interpolated contour milling process with the path of a complete circle has been performed. It is concluded that by comparing the ANN system with a dynamometer measuring cutting force directil, the ANN system has a good performance.

  • PDF

신경회로망을 이용한 생산라인 최적화 (Manufacturing Line Optimization Using Artificial Neural Networks)

  • 허철회;박진희;정환묵
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 춘계학술대회 학술발표 논문집
    • /
    • pp.79-82
    • /
    • 2001
  • 생산품을 제조하는 과정에서 처리 시간에 따른 제조 기계를 최적의 수로 결정함으로서 공정 과정에서 비효율적인 제조 기계의 활용 비율을 줄일 수 있으며, 이는 공정 과정의 비용을 최소화할 수 있는 방법 중에 하나이다. 본 논문에서는 핸드폰에 사용되는 여러 가지 모델의 배터리를 생산하는 공장의 작업 과정을 조사하고, 일정하기 않은 처리 시간과 작업에 필요한 제조 기계를 조사하였다. 이를 인공 신경망(ANN)의 역전파 알고리즘을 이용하여 생산현장에서 효율적인 처리 시간과 공정 과정에서 생산에 적합한 기계의 수를 최적화시키는 방법을 제안한다.

  • PDF

음향방출기법을 이용한 원전 고온 고압 배관의 누설 특성 평가에 관한 연구 (A Study on the Leakage Characteristic Evaluation of High Temperature and Pressure Pipeline at Nuclear Power Plants Using the Acoustic Emission Technique)

  • 김영훈;김진현;송봉민;이준현;조윤호
    • 비파괴검사학회지
    • /
    • 제29권5호
    • /
    • pp.466-472
    • /
    • 2009
  • 고온, 고압의 원자력 배관 누설 판별을 위해 음향방출기법(AE)을 이용한 누설감지 시스템인 ALMS 기법이 적용되고 있다. 이 시스템은 단지 AE 센서로 전해진 신호의 RMS값을 이용하여 누설의 유무만을 판단할 뿐, 누설 발생시 누설부의 크기나 형태를 평가하는 것에는 어려움이 있었다. 따라서 본 논문에서는 이러한 문제를 해결하기 위하여 AE센서와 가속도센서를 동시에 이용한 이중 센서 시스템을 제안하였다. 빠른 학습 속도와 정확성을 위해 Levenberg-Marquardt 학습 알고리즘을 이용한 인공신경회로망을 적용시키고, 이를 통해 신뢰성 있는 분석 결과를 얻을 수 있다. 배관내 압력과 누설부의 크기와 모양에 따른 실험신호들을 학습시키고 그 판별 정확성을 확인하였다. 추가적으로 배관 두께에 따라 발생하는 파(wave)의 종류와 특성이 달라지는 것을 이론과 실험을 통하여 알아보았다.

인공신경회로망에 의한 유도전동기의 회전자 저항 추정 (Rotor Resistance Estimation of Induction Motor by Artificial Neural-Network)

  • 김길봉;최정식;고재섭;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.50-52
    • /
    • 2006
  • This paper Proposes a new method of on-line estimation for rotor resistance of the induction motor in the indirect vector controlled drive, using artificial neural network (ANN). The back propagation algorithm is used for training of the neural networks. The error between the desired state variable of an induction motor and actual state variable of a neural network model is back propagated to adjust the weight of a neural network model, so that the actual state variable tracks the desired value. The performance of rotor resistance estimator and torque and flux responses of drive, together with these estimators, are investigated variations rotor resistance from their nominal values. The rotor resistance are estimated analytically, using the proposed ANN in a vector controlled induction motor drive.

  • PDF

GMAW에서 비드형상제어에 관한 연구 (Control of Bead Geometry in GMAW)

  • 이재범;방용우;오성원;장희석
    • Journal of Welding and Joining
    • /
    • 제15권6호
    • /
    • pp.116-123
    • /
    • 1997
  • In GMA welding processes, bead contour and penetration patterns are criterion to estimate weld quality. Bead geometry is commonly defined with width, height and depth. When weaving is taken into account, selection of welding conditions is known to be difficult. Thus, empirical or trial-and-error method are usually introduced. This study examined the correlation of welding process variables including weaving parameters with bead geometry using srtificial neural networks(ANN). The main task of the Ann estimator is to realize the mapping characteristics from the sampled welding process variables to the actual bead geometry through training. After the neural network model is constructed, welding process variables for desired bead geometry is selected by inverse model. Experimental varification of the inverse model is conducted through actual welding.

  • PDF