• 제목/요약/키워드: 인공신경망 모형

검색결과 408건 처리시간 0.037초

인공신경망을 이용한 항공기 기내식 수요예측의 예측력 개선 방안에 관한 연구 (Airline In-flight Meal Demand Forecasting with Neural Networks and Time Series Models)

  • Lee, Young-Chan;Seo, Chang-Gab
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제10권2호
    • /
    • pp.151-164
    • /
    • 2001
  • 현재의 항공사 기내식 수요예측 시스템으로는 항공기 운항의 지연이나 초과 주문으로 인한 손실 문제를 해결하기 힘든 것으로 알려져 있다. 이러한 문제를 해결하기 위해 본 연구에서는 항공기 기내식 시계열 자료만을 입력변수로 사용한 단순인공신경망모형(simple neural network model), 단순인공신경망모형에 전통적인 시계열 기법(본 연구에서는 지수 평활법)의 예측 결과를 입력변수로 추가한 혼합인공신경망모형(hybrid neural network model), 그리고 혼합인공신경 망 모형에 상관관계가 높은 다른 시계열 자료(본 논문에서는 유사 노선의 다른 항공기 기내식 시계열 자료)를 인공신경망의 입력변수로 추가시킨 하이퍼혼합인공신경망모형(hyper hybrid neural network model)을 새로운 항공기 기내식 수요예측 기법으로 제안하고, 이들 모형의 예측력을 비교 분석하였다. 분석 결과 하이퍼혼합인공신경망 모형의 예측력이 가장 우수한 것으로 나타나, 인공신경 망을 기반으로 한 수요예측에 있어 상관관계가 높은 다른 시계열 자료를 입력변수로 추가함으로써 인공신경망모형의 예측력을 개선시킬 수 있음을 알 수 있었다

  • PDF

효과적인 의사결정을 위한 2단계 하이브리드 인공신경망 접근방법에 관한 연구 (A Study on the Two-Phased Hybrid Neural Network Approach to an Effective Decision-Making)

  • 이건창
    • Asia pacific journal of information systems
    • /
    • 제5권1호
    • /
    • pp.36-51
    • /
    • 1995
  • 본 논문에서는 비구조적인 의사결정문제를 효과적으로 해결하기 위하여 감독학습 인공신경망 모형과 비감독학습 인공신경망 모형을 결합한 하이브리드 인공신경망 모형인 HYNEN(HYbrid NEural Network) 모형을 제안한다. HYNEN모형은 주어진 자료를 클러스터화 하는 CNN(Clustering Neural Network)과 최종적인 출력을 제공하는 ONN(Output Neural Network)의 2단계로 구성되어 있다. 먼저 CNN에서는 주어진 자료로부터 적정한 퍼지규칙을 찾기 위하여 클러스터를 구성한다. 그리고 이러한 클러스터를 지식베이스로하여 ONN에서 최종적인 의사결정을 한다. CNN에서는 SOFM(Self Organizing Feature Map)과 LVQ(Learning Vector Quantization)를 클러스터를 만든 후 역전파학습 인공신경망 모형으로 이를 학습한다. ONN에서는 역전파학습 인공신경망 모형을 이용하여 각 클러스터의 내용을 학습한다. 제안된 HYNEN 모형을 우리나라 기업의 도산자료에 적용하여 그 결과를 다변량 판별분석법(MDA:Multivariate Discriminant Analysis)과 ACLS(Analog Concept Learning System) 퍼지 ARTMAP 그리고 기존의 역전파학습 인공신경망에 의한 실험결과와 비교하였다.

  • PDF

인공신경망과 장단기메모리 모형의 유출량 모의 성능 분석 (Comparing the Performance of Artificial Neural Networks and Long Short-Term Memory Networks for Rainfall-runoff Analysis)

  • 김지혜;강문성;김석현
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.320-320
    • /
    • 2019
  • 유역의 수문 자료를 정확하게 분석하는 것은 수리 구조물을 효율적으로 운영하기 위한 중요한 요소이다. 인공신경망(Artificial Neural Networks, ANNs) 모형은 입 출력 자료의 비선형적인 관계를 해석할 수 있는 모형으로 강우-유출 해석 등 수문 분야에 다양하게 적용되어 왔다. 이후 기존의 인공신경망 모형을 연속적인(sequential) 자료의 분석에 더 적합하도록 개선한 회귀신경망(Recurrent Neural Networks, RNNs) 모형과 회귀신경망 모형의 '장기 의존성 문제'를 개선한 장단기메모리(Long Short-Term Memory Networks, 이하 LSTM)가 차례로 제안되었다. LSTM은 최근에 주목받는 딥 러닝(Deep learning) 기법의 하나로 수문 자료와 같은 시계열 자료의 분석에 뛰어난 성능을 보일 것으로 예상되며, 수문 분야에서 이에 대한 적용성 평가가 요구되고 있다. 본 연구에서는 인공신경망 모형과 LSTM 모형으로 유출량을 모의하여 두 모형의 성능을 비교하고 향후 LSTM 모형의 활용 가능성을 검토하고자 하였다. 나주 수위관측소의 수위 자료와 인접한 기상관측소의 강우량 자료로 모형의 입 출력 자료를 구성하여 강우 사상에 대한 시간별 유출량을 모의하였다. 연구 결과, 1시간 후의 유출량에 대해서는 두 모형 모두 뛰어난 모의 능력을 보였으나, 선행 시간이 길어질수록 LSTM의 정확성은 유지되는 반면 인공신경망 모형의 정확성은 점차 떨어지는 것으로 나타났다. 앞으로의 연구에서 유역 내 다양한 수리 구조물에 의한 유 출입량을 추가로 고려한다면 LSTM 모형의 활용성을 보다 더 확장할 수 있을 것이다.

  • PDF

인공신경망 모형을 활용한 강우 앙상블 생성 및 조합 (Generation and Combination of Rainfall Ensemble using Artificial Neural Network Model)

  • 김태림;신주영;주경원;허준행
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.497-497
    • /
    • 2018
  • 복잡한 기상조건 하에서 강우의 예측은 수문 기상 분야에서 필수적인 과정이라 할 수 있다. 특히 월 단위의 강우 예측은 장기적인 수자원 관리 및 계획 수립 시 매우 중요한 기준이 되기 때문에 보다 정확하고 신뢰도 있는 예측을 필요로 하고 있다. 이를 위해 전 지구적 기후 변동의 양상을 수치화 하여 나타낼 수 있는 기상인자의 활용이 활발해지고 있으며 다양한 모형을 기반으로 한 강우 예측이 수행되고 있다. 최근에는 인공지능 기법을 활용한 인공신경망 모형의 적용이 활발해짐에 따라 높은 예측력을 바탕으로 강우 예측에 대한 연구가 이루어지고 있지만 초기 가중치의 무작위성 또는 과적합으로 인한 문제도 함께 나타나고 있다. 본 연구에서는 인공신경망 모형의 활용성을 높이고 신뢰성을 확보하기 위한 강우 예측을 수행하고자 하였다. 이를 위해 다양한 기상인자를 활용하여 인공신경망 모형을 위한 정보를 구축하고 인공신경망 모형을 통해 생성되는 결과로부터 단일 예측이 아닌 앙상블 예측을 활용함으로써 강우 앙상블을 생성하고 조합하였다. 그 결과 인공신경망 모형을 통한 단일 예측보다 앙상블을 통한 예측으로 안정적이고 정확한 예측 결과를 산정할 수 있었으며 기존에 인공신경망 모형을 통한 예측의 문제점을 보완할 수 있었다.

  • PDF

인공 신경망을 이용한 모형말뚝의 수평변위와 최대 휨모멘트 예측 (Prediction of Lateral Deflection and Maximum Bending Moment of Model Piles Using Artificial Neural Network)

  • 김병탁;김영수;이우진
    • 한국지반공학회논문집
    • /
    • 제16권5호
    • /
    • pp.169-178
    • /
    • 2000
  • 본 논문에서는 단일 및 군말뚝의 수평변위와 최대 휨모멘트를 예측하기 위하여 인공신경망을 도입하였다. 인공신경망에 의한 결과는 낙동강 모래지반에서 단일 및 군말뚝에 대하여 수행한 일련의 모형실험결과와 비교하였다. 인공신경망 중의 하나인 오류 역전파 신경망(EBIPNN)의 적용성 검증을 위하여 600개의 모형실험결과들을 이용하였다. 그리고 신경망의 구조는 한개의 입력층과 두개의 은닉층 그리고 한개의 출력층으로 구성되었다. 전체 데이터의 25%, 50% 그리고 75% 결과는 각각 신경망의 학습에 이용되었으며 학슴에 이용하지 않은 데이터들은 예측에 이용되었다. 인공신경망 학습결과와 실험결과의 비교에 의하면, 신경망의 최적학습을 위하여 최적학습을 위하여 적합한 은닉층의 뉴런수는 각각 30개로 그리고 학습률은 0.9로 결정되었다. 전체 데이터의 50%이상으로 학습을 수행한 신경망의 모델은 정확한 예측을 하는 것으로 나타났다. 따라서, 인공신경망 모델리 수평하중을 받는 말뚝의 수평변위와 최대 휨모멘트의 예측에 적용될 수 있는 가능성을 보여주었다.

  • PDF

일상어휘를 기반으로 한 선물 가격 예측모형의 계발

  • 김광용;이승용
    • 한국데이타베이스학회:학술대회논문집
    • /
    • 한국데이타베이스학회 1999년도 춘계공동학술대회: 지식경영과 지식공학
    • /
    • pp.291-300
    • /
    • 1999
  • 본 논문은 인공신경망과 귀납적 학습방법 등의 인공지능 방법과 선물가격결정에 대한 기존 재무이론을 사용하여 일상어취로 표현되는 파생상품 가격예측 모형을 개발하는데 있다. 모형의 개발은 1단계로 인공신경망이나 기존의 선물가격결정이론(평균보 유비용모형이나 일반균형모형)을 이용하여 선물 가격을 예측한 후, 서로 비교 분석하여 인공신경망 모형의 우수성을 확인하였다. 귀납적 학습방법중 CART 알고리듬을 사용하여 If-Then 규칙을 생성하였다. 특히 실용적 측면에서 선물가격의 일상어휘화를 통한 모형개발을 여러 가지 방법으로 시도하였다. 이러한 선물가격 예측모형의 유용성은 일단 If-Then 규칙으로 표현되어 전문가의 판단에 확실한 이론적인 근거를 제시할 수 있는 장점이 있으며, 특히 의사결정지원시스템으로 활용화 될 경우 매우 유용한 근거자료로 활용될 수 있다. 이러한 선물가격 예측모형의 정확성은 분석표본과 검증표본으로 나누어 검증표본에서 세가지 기본모형(평균보유 비용모형, 일반균형모형, 인공신경망 모형)과 각 모형의 귀납적 학습방법 모형의 다른 3가지 어휘표현방법 3가지를 모형별로 비교 분석하였다. 분석결과 인공신경망모형은 상당한 예측력을 갖고 있는 것으로 판명되었으며, 특히 CART를 기반으로 한 일상어취 기반의 선물가격예측 모형은 예측력이 높은 것으로 나타났다.

  • PDF

일 유출량 해석을 위한 SWAT 모형과 인공신경망의 연계 (Combining SWAT model with artificial neural networks for modelling a daily discharge)

  • 이도훈;김남원;정일문
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2012년도 학술발표회
    • /
    • pp.195-195
    • /
    • 2012
  • 인공신경망 모형은 복잡하고 비선형의 입력과 출력 관계를 잘 반영할 수 있어서 유출 모델링에 널리 적용되어 왔다. 그러나 인공신경망 모형은 강우나 유역특성의 공간적 분포를 반영하는 것이 어려우며 물리적 개념이 결여되어 있는 단점이 있다. 본 연구에서는 유역특성과 물리적 개념을 반영할 수 있는 물리기반 모형과 인공신경망 모형의 장점들을 조합하여 물리기반 모형의 일 유출량 해석 능력을 향상하기 위하여 SWAT 모형과 인공신경망(ANN)을 연계하였다. SWAT-ANN 연계모형은 두 단계로 구성되어 진다. 첫 번째 단계에서는 관측 자료를 이용하여 SWAT 모형을 보정한다. 두 번째 단계에서는 첫 번째 단계에서 계산한 소유역별 SWAT 모형의 유출결과를 ANN의 입력자료로 이용하여 SWAT-ANN 연계모형을 구축한다. SCE-UA 최적화 방법을 적용하여 SWAT 모형의 매개변수들을 보정하였고, ANN 학습은 3층의 feed-forward 역전파 알고리즘에 기초한 Bayesian Regularization 방법을 적용하였다. ANN 은닉층의 뉴런 및 전달함수는 시행착오를 통하여 적절한 ANN 구조를 설정하여 SWAT-ANN 연계모형의 일유출량을 모의하였다. 여러 가지 통계적 오차기준을 이용하여 보청천 유역에서 SWAT-ANN 연계모형의 결과와 SWAT 단독 모형의 결과를 비교하였다. SWAT-ANN 연계모형이 SWAT 단독 모형보다 더 우수한 결과를 나타내어 일 유출량 해석을 위한 SWAT-ANN 연계모형의 유용성을 확인할 수 있었다.

  • PDF

인공신경망 모형을 이용한 영상자료의 토지피복분류 (Land Cover Classification of Image Data Using Artificial Neural Networks)

  • 강문성;박승우;윤광식
    • 농촌계획
    • /
    • 제12권1호
    • /
    • pp.75-83
    • /
    • 2006
  • 본 연구에서는 최대우도법과 인공신경망 모형에 의해 카테고리 분류를 수행하고 각각의 분류 성능을 비교 평가하였다. 인공신경망 모형은 오류역전파 알고리즘을 이용한 것으로서 학습을 통한 은닉층의 최적노드수를 결정하여 카테고리 분류를 수행하도록 하였다. 인공신경망 최적 모형은 입력층의 노드수가 7개, 은닉층의 최적노드수가 18개, 그리고 출력층의 노드수가 5개인 것으로 구성하였다. 위성영상은 1996년에 촬영된 Landsat TM-5 영상을 사용하였고, 최대우도법과 인공신경망 모형에 의한 카테고리 분류를 위하여 각각의 카테고리에 대한 분광특성을 대표하는 지역을 절취하였다. 분류 정확도는 인공신경망 모형에 의한 방법이 90%, 최대우도법이 83%로서, 인공신경망 모형의 분류 성능이 뛰어난 것으로 나타났다. 카테고리 분류 항목인 토지 피복 상태에 따른 분류는 두 가지 방법에서 밭과 주거지의 분류오차가 큰 것으로 나타났다. 특히, 최대우도법에 의한 밭에서의 태만오차는 62.6%로서 매우 큰 값을 보였다. 이는 밭이나 주거지의 특성이 위성영상 촬영시기에 따라 나지의 형태로 분류되거나 산림, 또는 논으로도 분류되는 경향이 있기 때문인 것으로 보인다. 차후에 카테고리 분류를 위한 각각의 클래스의 보조적인 정보를 추가한다면, 카테고리 분류 향상이 이루어질 것으로 기대된다.

인공신경망과 사례기반추론을 활용한 옵션가격결정에 관한 연구

  • 김명섭;김광용
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 1999년도 추계학술대회-지능형 정보기술과 미래조직 Information Technology and Future Organization
    • /
    • pp.375-382
    • /
    • 1999
  • 본 연구는 데이터마이닝 기법과 전문가 지식을 활용한 옵션가격 결정모형을 제시하는데 목적이 있다. 첫째, 데이터마이닝 기법 주의 하나인 인공신경망 기법을 활용하여 변동성과 옵션가격을 추정하고, 이를 전통적인 재무이론의 결과와 비교하였다. 인공신경망으로 추정된 변동성은 기존의 모형에 비해 개선된 성과를 보였으며, 가격결정모형은 대등한 성과를 보였다. 또한 모수적 기법과 비모수적 기법의 통합을 통해 성과의 개선을 가져올 수 있음을 보였다. 둘째, 시장 참여자들의 정보를 반영하여 옵션의 이론적 가격결정모형의 성과를 개선할 수 있는 사례기반추론시스템을 제안하였다.

  • PDF

약체연결뉴런 제거법에 의한 부도예측용 인공신경망 모형에 관한 연구 (Weak-linked Neurons Elimination Method based Neural Network Models for Bankruptcy Prediction)

  • 손동우;이웅규
    • 한국정보시스템학회:학술대회논문집
    • /
    • 한국정보시스템학회 2000년도 춘계학술대회
    • /
    • pp.115-121
    • /
    • 2000
  • 본 연구는 인공신경망 모형에서 최적 입력 변수를 선정하기 위하여 새로운 선처리 기법인 약체연결뉴런 제거법을 제안하고 그 예측력의 우월성을 순수 인공신경망과 의사결정트리로 선처리한 인공신경망 모델과 각각 비교했으며, 그 결과를 보면 본 연구에서 제안하고 있는 약체연결뉴런 제거법에 의해 입력변수 선정과정을 거친 모델의 성과가 순수 인공신경망이나 의사결정트리로 선처리한 인공신경망 모델에 비해 예측적중율이 우수한 것으로 나타났다.

  • PDF