• 제목/요약/키워드: 인간 동작 추정

검색결과 16건 처리시간 0.045초

인간자세 추정방법에 의한 2차원 웹툰 캐릭터 포즈 생성 (Pose Creation of Character in Two-Dimensional Cartoon through Human Pose Estimation)

  • 정희용;신춘성
    • 방송공학회논문지
    • /
    • 제27권5호
    • /
    • pp.718-727
    • /
    • 2022
  • 국내 웹툰 산업 매출액이 전년도 대비 약 65% 폭발적 성장을 하였고 향후 매출 규모가 1조원을 돌파할 것이라 예상을 하고 있다. 웹툰 제작 과정을 살펴보면 스토리와 콘티와 같이 창작을 필요로 하는 작업도 있지만, 스케치와 펜터치와 같은 단순 반복 작업도 있기 때문에 최근 주목받고 있는 딥러닝 기반 인간자세 추정방법을 사용하여 간소화 할 수 있다면, 웹툰 제작 과정을 효과적으로 개선할 수 있다. 따라서 본 연구는 인간자세 추정방법을 사용하여 인간의 동작을 스케치한 2차원 웹툰 캐릭터와 관절을 매칭 시켜서, 인간의 동작에 따라서 캐릭터의 동작을 생성시키는 방법을 제안한다. 이를 위해 생성한 2차원 캐릭터를 SVG 파일 형식인 벡터화된 그래픽 이미지로 생성시켜 인간자세의 관절을 나타내는 스켈레톤과 매칭을 시켰다. 실험결과를 통해 2차원 웹툰 캐릭터의 포즈가 웹 카메라의 사용자 자세와 동일한 동작을 생성시킬 수 있는 것을 확인할 수 있었다. 또한 저장한 정지 이미지에서 하나의 포즈를 선별하여 필요한 장면에 삽입할 수도 있고, 연속 동작에 대하여 비디오로 녹화하여 포즈 선별을 할 수 있다는 점도 확인하였다. 제안한 포즈 생성 방법은 기존의 포즈 투 포즈 방식 애니메이션 포즈 생성에 큰 기여를 할 수 있을 것으로 기대된다.

딥러닝 기반 인간 동작 예측 기법 서베이 (Human Motion Prediction with Deep Learning: A Survey)

  • ;박인규
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2021년도 하계학술대회
    • /
    • pp.183-186
    • /
    • 2021
  • 인간 자세 추정 연구는 최근 크게 주목 받고 있는 연구 분야이다. 본 연구는 또한, 자기 지도 학습이라고 명명된 딥러닝 기법이 부상하면서 여러 문제가 해결되고 있다. 본 논문에서는, 이러한 문제를 해결하는 딥러닝 기반 인간 자세 추정 방법들을 유형별로 분류해본다. 그리고 각 분류별 설명과 함께 대표적인 방법들을 소개한다. 마지막으로, 결론에서는 본 연구가 앞으로 나아갈 방향에 대한 논의를 제시한다.

  • PDF

RGB 이미지 기반 인간 동작 추정을 통한 투구 동작 분석 (Analysis of Pitching Motions by Human Pose Estimation Based on RGB Images)

  • 우영주;주지용;김영관;정희용
    • 스마트미디어저널
    • /
    • 제13권4호
    • /
    • pp.16-22
    • /
    • 2024
  • 투구는 야구의 시작이라 할 만큼 야구에서 주요한 부분을 차지한다. 투구 동작의 정확한 분석은 경기력 향상과 부상 예방 측면에서 매우 중요하다. 올바른 투구 동작을 분석할 때, 현재 주로 사용되는 모션캡처는 환경적으로 치명적인 단점들이 몇 가지 존재한다. 본 논문에서 우리는 이러한 단점들이 존재하는 모션캡처를 대체하기 위하여 RGB 기반의 Human Pose Estimation(HPE) 모델을 활용한 투구 동작의 분석을 제안하며 이에 대한 신뢰도를 검증하기 위해 모션캡처 데이터와 HPE 데이터의 관절 좌표를 Dynamic Time Warping(DTW) 알고리즘의 비교를 통해 두 데이터의 유사도를 검증하였다.

인간 캐릭터 포즈 식별: FPS 게임에서의 포즈 추정 기법 (Pose Estimation Techniques for Humanoid Characters in FPS Gaming Environments)

  • 한유정;이민섭;차민수;우지영
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2024년도 제69차 동계학술대회논문집 32권1호
    • /
    • pp.29-30
    • /
    • 2024
  • 본 논문은 Krafton의 PUBG: BATTLEGROUNDS 게임에서 플레이어 분류를 목표로 하며, 포즈 추정기술을 사용하여 일반 플레이어와 봇을 구분한다. 이는 게임에서 직접 수집한 비디오 데이터를 기반으로 하며, 다음과 같은 두 가지 접근 방식을 제안한다. 첫 번째 방법은 동작 시퀀스 분석을 통해, 사용자의 특정동작 패턴을 식별하고 로지스틱 회귀 모델을 활용해 사용자 유형을 분류한다. 두 번째 방법은 YOLO-pose 모델을 사용하여 비디오 데이터에서 키포인트를 추출하고, 이를 LSTM 모델에 적용하여 프레임별로 사용자의 유형을 분류한다. 이러한 이중 접근 방식은 게임의 공정성과 사용자 경험을 향상시키는 새로운 도구를 제공하며, 보다 안전한 게임 환경에 기여할 수 있다. 이 연구는 게임 산업뿐만 아니라 보안 및 모니터링 분야에서도 동작 분석에 대한 혁신적인 접근 방식으로 활용될 잠재력을 가지고 있다.

  • PDF

CONDENSATION 알고리즘을 이용한 입자필터 기반 동작 인식 연구 (A Study on the Gesture Recognition Based on the Particle Filter Using CONDENSATION Algorithm)

  • 이양원
    • 한국정보통신학회논문지
    • /
    • 제11권3호
    • /
    • pp.584-591
    • /
    • 2007
  • 연속되는 이미지 중에서 인간의 동작을 인식하는 것은 인간과 컴퓨터의 상호 작용에서 매우 중요하고 도전할 분야이다. 본 논문에서는 CONDENSATION 알고리즘을 이용하여 입자 필터(particle filter)에 기반한 동작 인식 알고리즘을 제안한다. 입자 필터는 조건 확률 전파 모델(Conditional Density Propagation)인 베이시안(Bayesian) 추정 규칙을 적용하는 추적구조를 갖고 있기 때문에 일반적으로 기존 추적 알고리즘보다 뛰어난 성능을 갖는 경향이 있다. 본 논문에서는 알고리즘의 성능 평가를 위해서 두 개의 동작 모델을 가정하였고, 영상에 대한 전처리를 위해서는 MATLAB를 이용하였으며 입자필터는 고속 처리를 위하여 C++로 구현하였다. 두 개의 동작 실험 결과를 통해, 동작 인식 입자 필터가 근접한 동작 환경 속에서 강인한 추적 성능을 나타냄을 확인하였다.

Particle Filter를 이용한 제스처 인식 연구 (A Study on the Gesture Recognition Using the Particle Filter Algorithm)

  • 이양원;김철원
    • 한국정보통신학회논문지
    • /
    • 제10권11호
    • /
    • pp.2032-2038
    • /
    • 2006
  • 연속되는 이미지 중에서 인간의 동작을 인식하는 것은 인간과 컴퓨터 의 상호 작용에서 매우 중요하고 도전할 분야이다. 본 논문에서는 CONDENSATION 알고리즘을 이용하여 입자 필터(particle filter)에 기반한 동작 인식 알고리즘을 제안한다. 입자 필터는 조건 확률 전파 모델(Conditional Density Propagation)인 베이시안(Bayesian) 추정 규칙을 적용하는 추적구조를 갖고 있기 때문에 다른 어떤 종류의 추적 알고리즘보다 뛰어난 성능을 보인다. 본 논문에서는 알고리즘의 성능평가를 위해서 두 개의 동작 모델을 가정하였고, 영상에 대한 전처리를 위해서는 MATLAB를 이용하였으며 입자필터는 고속 처리를 위하여 C++로 구현하였다. 두 개의 동작 실험 결과를 통해, 동작 인식 입자 필터가 복잡한 환경 속에서 강인한 추적 성능을 나타냄을 확인하였다.

동작 유사도와 적응 추이를 이용한 한국 수화 인식에서의 사용자에 대한 적응 (Incremental User Adaptation in Korean Sign Language Recognition Using Motion Similarity and Prediction from Adaptation History)

  • 정성훈;박광현;변증남
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2007년도 학술대회 1부
    • /
    • pp.386-392
    • /
    • 2007
  • 최근 들어 손 제스처를 인간-기계 인터페이스에 활용하는 연구가 많아지고 있다. 그 중에서 수화 인식은 청각장애인과 일반인 사이의 원활한 의사 소통을 하게 해 주는 인터페이스로서 중요성이 날로 더해가고 있다. 하지만 기존의 수화 인식 연구는 사용자 개개인의 수화 동작의 차이를 고려하지 않고 다수 사용자를 위한 모델을 사용하기 때문에 사용자에 따라 인식률이 낮아지게 된다. 이러한 점을 보완하기 위해 본 논문에서는 개개인의 수화 동작 특성을 반영하여 시스템이 사용자에게 적응해 가는 과정을 다루고자 한다. 특히 점진적인 사용자 적응에 있어서 가장 문제가 되는 것은 어떻게 비관측된 상태(unobserved state)의 파라미터를 수정할 것인가 하는 것이다. 이를 위해서 본 논문에서는 동작 유사도와 적응 추이에 의한 추정을 통해 비관측된 상태의 모델 파라미터를 수정한다. 실제 청각 장애인들로부터 획득한 데이터베이스를 사용하여 제안한 방법이 기존 방법에 비해 더욱 빠르게 사용자의 특성을 시스템에 반영하고 인식률을 향상시킨다는 것을 실험을 통해 보인다.

  • PDF

스윙 모션 사전 지식을 활용한 정확한 야구 선수 포즈 보정 (Motion Prior-Guided Refinement for Accurate Baseball Player Pose Estimation)

  • 오승현;김희원
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.615-616
    • /
    • 2024
  • 현대 야구에서 타자의 스윙 패턴 분석은 상대 투수가 투구 전략을 수립하는데 상당히 중요하다. 이미지 기반의 인간 포즈 추정(HPE)은 대규모 스윙 패턴 분석을 자동화할 수 있다. 그러나 기존의 HPE 방법은 빠르고 가려진 신체 움직임으로 인해 복잡한 스윙 모션을 정확하게 추정하는 데 어려움이 있다. 이러한 문제를 극복하기 위해 스윙 모션에 대한 사전 정보를 활용하여 야구 선수의 포즈를 보정하는 방법(BPPC)을 제안한다. BPPC는 동작 인식, 오프셋 학습, 3D에서 2D 프로젝션 및 동작 인지 손실 함수를 통해 스윙 모션에 대한 사전 정보를 반영하여 기성 HPE 모델 결과를 보정한다. 실험에 따르면 BPPC는 벤치마크 데이터셋에서 기성 HPE 모델의 2D 키포인트 정확도를 정량적 및 정성적으로 향상시키고, 특히 신뢰도 점수가 낮고 부정확한 키포인트를 크게 보정했다.

피부색 정보 및 역운동학을 이용한 인체 움직임 추정 (Human Body Postures Estimation Using skin color information and Inverse Kinematics)

  • 박정주;김주혜;김명희
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (B)
    • /
    • pp.820-822
    • /
    • 2005
  • 본 논문에서는 $CAVE^{TM}-like$ 시스템에서 역운동학을 이용하여 사용자의 인체 움직임을 실시간으로 추정하기 위한 기법을 제안한다. 사용자를 둘러싼 스크린으로 투사되는 빛에 인하여 매순간 변화하는 배경을 포함하는 영상으로부터 사용자 영역을 추출하기 위하여 적외선 반사 영상을 이용하였다. 이를 이용하여 추출된 사용자 컬러 영상에 프로젝션 기반 가상환경의 특성을 고려한 컬러 모델을 적용하여 사용자의 얼굴과 손 영역을 추출하였다. 위치 추정 단계를 통하여 다음 프레임에서의 관심영역 위치를 미리 예측하고 추출된 사용자의 손과 얼굴 위치 정보를 말단장치로 이용하고, 관절모델과 운동학적 제약조건을 기반으로 역운동학적인 방법을 통해 사용자의 동작을 추정하였다. 제안 기법에서는 별도의 마커나 도구를 사용하지 않기 때문에 비침입적이며 사용자 움직임의 제약을 최소화할 수 있기 때문에 보다 인간 중심적인 인터랙션을 위한 기반 기술로 이용될 수 있다.

  • PDF

OpenPose기반 딥러닝을 이용한 운동동작분류 성능 비교 (Performance Comparison for Exercise Motion classification using Deep Learing-based OpenPose)

  • 손남례;정민아
    • 스마트미디어저널
    • /
    • 제12권7호
    • /
    • pp.59-67
    • /
    • 2023
  • 최근 인간의 자세와 행동을 추적하는 행동 분석 연구가 활발해지고 있다. 특히 2017년 CMU에서 개발한 오픈소스인 오픈포즈(OpenPose)는 사람의 외모와 행동을 추정하는 대표적인 방법이다. 오픈포즈는 사람의 키, 얼굴, 손 등의 신체부위를 실시간으로 감지하고 추정할 수 있어 스마트 헬스케어, 운 동 트레이닝, 보안시스템, 의료 등 다양한 분야에 적용될 수 있다. 본 논문에서는 헬스장에서 사용자들이 가장 많이 운동하는 Squat, Walk, Wave, Fall-down 4개 동작을 오픈포즈기반 딥러닝인 DNN과 CNN을 이용하여 운동 동작 분류 방법을 제안한다. 학습데이터는 녹화영상 및 실시간으로 카메라를 통해 사용자의 동작을 캡처해서 데이터 셋을 수집한다. 수집된 데이터 셋은 OpenPose을 이용하여 전처리과정을 진행하고, 전처리과정이 완료된 데이터 셋은 본 논문에서 제안한 DNN 및 CNN 모델 이용하여 운동 동작 분류를 학습한다. 제안한 모델에 대한 성능 오차는 MSE, RMSE, MAE를 사용한다. 성능 평가 결과, 제안한 DNN 모델 성능이 제안한 CNN 모델보다 우수한 것으로 나타났다.