• Title/Summary/Keyword: 인간 동작 추정

Search Result 16, Processing Time 0.023 seconds

Pose Creation of Character in Two-Dimensional Cartoon through Human Pose Estimation (인간자세 추정방법에 의한 2차원 웹툰 캐릭터 포즈 생성)

  • Jeong, Hieyong;Shin, Choonsung
    • Journal of Broadcast Engineering
    • /
    • v.27 no.5
    • /
    • pp.718-727
    • /
    • 2022
  • The Korean domestic cartoon industry has grown explosively by 65% compared to the previous year. Then the market size is expected to exceed KRW 1 trillion. However, excessive work results in health deterioration. Moreover, this working environment makes the production of human resources insufficient, repeating a vicious cycle. Although some tasks require creation activity during cartoon production, there are still a lot of simple repetitive tasks. Therefore, this study aimed to develop a method for creating a character pose through human pose estimation (HPE). The HPE is to detect key points for each joint of a user. The primary role of the proposed method was to make each joint of the character match that of the human. The proposed method enabled us to create the pose of the two-dimensional cartoon character through the results. Furthermore, it was possible to save the static image for one character pose and the video for continuous character pose.

Human Motion Prediction with Deep Learning: A Survey (딥러닝 기반 인간 동작 예측 기법 서베이)

  • Marchellus, Matthew;Park, In Kyu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2021.06a
    • /
    • pp.183-186
    • /
    • 2021
  • 인간 자세 추정 연구는 최근 크게 주목 받고 있는 연구 분야이다. 본 연구는 또한, 자기 지도 학습이라고 명명된 딥러닝 기법이 부상하면서 여러 문제가 해결되고 있다. 본 논문에서는, 이러한 문제를 해결하는 딥러닝 기반 인간 자세 추정 방법들을 유형별로 분류해본다. 그리고 각 분류별 설명과 함께 대표적인 방법들을 소개한다. 마지막으로, 결론에서는 본 연구가 앞으로 나아갈 방향에 대한 논의를 제시한다.

  • PDF

Analysis of Pitching Motions by Human Pose Estimation Based on RGB Images (RGB 이미지 기반 인간 동작 추정을 통한 투구 동작 분석)

  • Yeong Ju Woo;Ji-Yong Joo;Young-Kwan Kim;Hie Yong Jeong
    • Smart Media Journal
    • /
    • v.13 no.4
    • /
    • pp.16-22
    • /
    • 2024
  • Pitching is a major part of baseball, so much so that it can be said to be the beginning of baseball. Analysis of accurate pitching motions is very important in terms of performance improvement and injury prevention. When analyzing the correct pitching motion, the currently used motion capture method has several critical environmental drawbacks. In this paper, we propose analysis of pitching motion using the RGB-based Human Pose Estimation (HPE) model to replace motion capture, which has these shortcomings, and use motion capture data and HPE data to verify its reliability. The similarity of the two data was verified by comparing joint coordinates using the Dynamic Time Warping (DTW) algorithm.

Pose Estimation Techniques for Humanoid Characters in FPS Gaming Environments (인간 캐릭터 포즈 식별: FPS 게임에서의 포즈 추정 기법)

  • Youjung Han;Minseop Lee;Minsu Cha;Jiyoung Woo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.29-30
    • /
    • 2024
  • 본 논문은 Krafton의 PUBG: BATTLEGROUNDS 게임에서 플레이어 분류를 목표로 하며, 포즈 추정기술을 사용하여 일반 플레이어와 봇을 구분한다. 이는 게임에서 직접 수집한 비디오 데이터를 기반으로 하며, 다음과 같은 두 가지 접근 방식을 제안한다. 첫 번째 방법은 동작 시퀀스 분석을 통해, 사용자의 특정동작 패턴을 식별하고 로지스틱 회귀 모델을 활용해 사용자 유형을 분류한다. 두 번째 방법은 YOLO-pose 모델을 사용하여 비디오 데이터에서 키포인트를 추출하고, 이를 LSTM 모델에 적용하여 프레임별로 사용자의 유형을 분류한다. 이러한 이중 접근 방식은 게임의 공정성과 사용자 경험을 향상시키는 새로운 도구를 제공하며, 보다 안전한 게임 환경에 기여할 수 있다. 이 연구는 게임 산업뿐만 아니라 보안 및 모니터링 분야에서도 동작 분석에 대한 혁신적인 접근 방식으로 활용될 잠재력을 가지고 있다.

  • PDF

A Study on the Gesture Recognition Based on the Particle Filter Using CONDENSATION Algorithm (CONDENSATION 알고리즘을 이용한 입자필터 기반 동작 인식 연구)

  • Lee, Yang-Weon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.3
    • /
    • pp.584-591
    • /
    • 2007
  • The recognition of human gestures in image sequences is an important and challenging problem that enables a host of human-computer interaction applications. This paper describes a gesture recognition algorithm based on the particle filters, namely CONDENSATION. The particle filter is more efficient than any other tracking algorithm because the tracking mechanism follows Bayesian estimation rule of conditional probability propagation. We used two models for the evaluation of particle filter and apply the MAILAB for the preprocessing of the image sequence. But we implement the particle filter using the C++ to get the high speed processing. In the experimental results, it is demonstrated that the proposed algorithm prove to be robust in the cluttered environment.

A Study on the Gesture Recognition Using the Particle Filter Algorithm (Particle Filter를 이용한 제스처 인식 연구)

  • Lee, Yang-Weon;Kim, Chul-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.11
    • /
    • pp.2032-2038
    • /
    • 2006
  • The recognition of human gestures in image sequences is an important and challenging problem that enables a host of human-computer interaction applications. This paper describes a gesture recognition algorithm based on the particle filters, namely CONDENSATION. The particle filter is more efficient than any other tracking algorithm because the tracking mechanism follows Bayesian estimation rule of conditional probability propagation. We used two models for the evaluation of particle Inter and apply the MATLAB for the preprocessing of the image sequence. But we implement the particle filter using the C++ to get the high speed processing. In the experimental results, it is demonstrated that the proposed algorithm prove to be robust in the cluttered environment.

Incremental User Adaptation in Korean Sign Language Recognition Using Motion Similarity and Prediction from Adaptation History (동작 유사도와 적응 추이를 이용한 한국 수화 인식에서의 사용자에 대한 적응)

  • Jung, Seong-Hoon;Park, Kwang-Hyun;Bien, Zeung-Nam
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.386-392
    • /
    • 2007
  • 최근 들어 손 제스처를 인간-기계 인터페이스에 활용하는 연구가 많아지고 있다. 그 중에서 수화 인식은 청각장애인과 일반인 사이의 원활한 의사 소통을 하게 해 주는 인터페이스로서 중요성이 날로 더해가고 있다. 하지만 기존의 수화 인식 연구는 사용자 개개인의 수화 동작의 차이를 고려하지 않고 다수 사용자를 위한 모델을 사용하기 때문에 사용자에 따라 인식률이 낮아지게 된다. 이러한 점을 보완하기 위해 본 논문에서는 개개인의 수화 동작 특성을 반영하여 시스템이 사용자에게 적응해 가는 과정을 다루고자 한다. 특히 점진적인 사용자 적응에 있어서 가장 문제가 되는 것은 어떻게 비관측된 상태(unobserved state)의 파라미터를 수정할 것인가 하는 것이다. 이를 위해서 본 논문에서는 동작 유사도와 적응 추이에 의한 추정을 통해 비관측된 상태의 모델 파라미터를 수정한다. 실제 청각 장애인들로부터 획득한 데이터베이스를 사용하여 제안한 방법이 기존 방법에 비해 더욱 빠르게 사용자의 특성을 시스템에 반영하고 인식률을 향상시킨다는 것을 실험을 통해 보인다.

  • PDF

Motion Prior-Guided Refinement for Accurate Baseball Player Pose Estimation (스윙 모션 사전 지식을 활용한 정확한 야구 선수 포즈 보정)

  • Seunghyun Oh;Heewon Kim
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.615-616
    • /
    • 2024
  • 현대 야구에서 타자의 스윙 패턴 분석은 상대 투수가 투구 전략을 수립하는데 상당히 중요하다. 이미지 기반의 인간 포즈 추정(HPE)은 대규모 스윙 패턴 분석을 자동화할 수 있다. 그러나 기존의 HPE 방법은 빠르고 가려진 신체 움직임으로 인해 복잡한 스윙 모션을 정확하게 추정하는 데 어려움이 있다. 이러한 문제를 극복하기 위해 스윙 모션에 대한 사전 정보를 활용하여 야구 선수의 포즈를 보정하는 방법(BPPC)을 제안한다. BPPC는 동작 인식, 오프셋 학습, 3D에서 2D 프로젝션 및 동작 인지 손실 함수를 통해 스윙 모션에 대한 사전 정보를 반영하여 기성 HPE 모델 결과를 보정한다. 실험에 따르면 BPPC는 벤치마크 데이터셋에서 기성 HPE 모델의 2D 키포인트 정확도를 정량적 및 정성적으로 향상시키고, 특히 신뢰도 점수가 낮고 부정확한 키포인트를 크게 보정했다.

Human Body Postures Estimation Using skin color information and Inverse Kinematics (피부색 정보 및 역운동학을 이용한 인체 움직임 추정)

  • Park Jungju;Kim JuHaye;Kim Myoung-Hee
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.820-822
    • /
    • 2005
  • 본 논문에서는 $CAVE^{TM}-like$ 시스템에서 역운동학을 이용하여 사용자의 인체 움직임을 실시간으로 추정하기 위한 기법을 제안한다. 사용자를 둘러싼 스크린으로 투사되는 빛에 인하여 매순간 변화하는 배경을 포함하는 영상으로부터 사용자 영역을 추출하기 위하여 적외선 반사 영상을 이용하였다. 이를 이용하여 추출된 사용자 컬러 영상에 프로젝션 기반 가상환경의 특성을 고려한 컬러 모델을 적용하여 사용자의 얼굴과 손 영역을 추출하였다. 위치 추정 단계를 통하여 다음 프레임에서의 관심영역 위치를 미리 예측하고 추출된 사용자의 손과 얼굴 위치 정보를 말단장치로 이용하고, 관절모델과 운동학적 제약조건을 기반으로 역운동학적인 방법을 통해 사용자의 동작을 추정하였다. 제안 기법에서는 별도의 마커나 도구를 사용하지 않기 때문에 비침입적이며 사용자 움직임의 제약을 최소화할 수 있기 때문에 보다 인간 중심적인 인터랙션을 위한 기반 기술로 이용될 수 있다.

  • PDF

Performance Comparison for Exercise Motion classification using Deep Learing-based OpenPose (OpenPose기반 딥러닝을 이용한 운동동작분류 성능 비교)

  • Nam Rye Son;Min A Jung
    • Smart Media Journal
    • /
    • v.12 no.7
    • /
    • pp.59-67
    • /
    • 2023
  • Recently, research on behavior analysis tracking human posture and movement has been actively conducted. In particular, OpenPose, an open-source software developed by CMU in 2017, is a representative method for estimating human appearance and behavior. OpenPose can detect and estimate various body parts of a person, such as height, face, and hands in real-time, making it applicable to various fields such as smart healthcare, exercise training, security systems, and medical fields. In this paper, we propose a method for classifying four exercise movements - Squat, Walk, Wave, and Fall-down - which are most commonly performed by users in the gym, using OpenPose-based deep learning models, DNN and CNN. The training data is collected by capturing the user's movements through recorded videos and real-time camera captures. The collected dataset undergoes preprocessing using OpenPose. The preprocessed dataset is then used to train the proposed DNN and CNN models for exercise movement classification. The performance errors of the proposed models are evaluated using MSE, RMSE, and MAE. The performance evaluation results showed that the proposed DNN model outperformed the proposed CNN model.