• Title/Summary/Keyword: 익형유동

Search Result 152, Processing Time 0.016 seconds

Aerodynamic Analysis of Various Winglets (윙렛 형상에 따른 공력 특성 해석)

  • Lee, Yung-Gyo;Kim, Cheol-Wan;Shim, Jae-Yeul
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.24-29
    • /
    • 2008
  • Aircraft fuel efficiency is one of main concerns to aircraft manufacturers and to aviation companies because jet fuel price has tripled in last ten years. One of simple and effective methods to increase fuel efficiency is to reduce aircraft induced drag by using of wingtip devices. Induced drag is closely related to the circulation distribution, which produces strong wingtip vortex behind the tip of a finite wing. Wingtip devices including winglets can be successfully applied to reduce induced drag by wingtip vortex mitigation. Winglet design, however, is very complicated process and has to consider many parameters including installation position, height, taper ratio, sweepback, airfoil, toe-out angle and cant angle of winglets. In current research, different shapes of winglets are compared in the view of vortex mitigation. Appropriately designed winglets are proved to mitigate wingtip vortex and to increase lift to drag ratio. Also, the results show that winglets are more efficient than wingtip extension. That is the reason B-747-400 and B-737-800 chose winglets instead of a span increase to increase payload and range. Drag polar comparison chart is presented to show that minimum drag is increased by viscous drag of winglet, but at high lift, total drag is reduced by induced drag decrease. So, winglets are more efficient for aircraft that cruises at a high lift condition, which generates very strong wingtip vortex.

  • PDF

Effects of Wing Twist on Longitudinal Stability of BWB UCAV (날개의 비틀림이 동체-날개 융합익형 무인전투기의 종안정성에 미치는 영향에 대한 연구)

  • Ban, Seokhyun;Lee, Jihyeong;Kim, Sangwook;Cho, Jinsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • Lambda wing type Unmanned Combat Aerial Vehicle(UCAV) which adopts Blended Wing Body(BWB) has relatively less drag and more stealth performance than conventional aircraft. However, Pitching moment is rapidly increased at a specific angle of attack affected by leading edge vortex due to leading edge sweep angle. Wind tunnel testing and numerical analysis were carried out with UCAV 1303 configuration on condition of 50 m/s of flow velocity, $-4^{\circ}{\sim}28^{\circ}$ of the range of angle-of-attack. The effect of wing twist for longitudinal stability at the various angles of attack was verified in this study. When negative twist is applied on the wing, Pitch-break was onset at higher angle of attack due to delayed flow separation on outboard of the wing. On the other hand, pitch-break was onset at lower angle of attack and lift-to-drag ratio was increased when positive twist is applied on the wing.