• Title/Summary/Keyword: 익단 누설 유동

Search Result 13, Processing Time 0.023 seconds

A Numerical Analysis of Tip Flow Characteristics in An 1.5 Stage Axial Turbine (1.5단 축류 터빈의 익단 유동 특성에 관한 수치해석)

  • Hwang, Dong-Ha;Jung, Yo-Han;Baek, Je-Hyun;Rhee, Dong-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.157-160
    • /
    • 2008
  • Tip clearance is a critical point in turbine to reduce friction between blade and casing. To estimate the direct effectiveness of the tip clearance, numerically analyzed are flow passing through rotors with and without tip clearance. The Results by CFX tells that rotors with tip clearance have vortex structure which makes larger loss in turbine, and shows lower total-to-total efficiency than that without tip clearance.

  • PDF

Study on the Performance of a Centrifugal Compressor Using Fluid-Structure Interaction Method (유체-구조 연성해석을 이용한 원심압축기 운전익단간극과 성능 예측)

  • Lee, Horim;Kim, Changhee;Yang, Jangsik;Son, Changmin;Hwang, Yoonjei;Jeong, Jinhee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.6
    • /
    • pp.357-363
    • /
    • 2016
  • In this study, we perform a series of aero-thermo-mechanical analyses to predict the running-tip clearance and the effects of impeller deformation on the performance using a centrifugal compressor. During operation, the impeller deformation due to a combination of the centrifugal force, aerodynamic pressure and the thermal load results in a non-uniform tip clearance profile. For the prediction, we employ the one-way fluid-structure interaction (FSI) method using CFX 14.5 and ANSYS. The predicted running tip clearance shows a non-uniform profile over the entire flow passage. In particular, a significant reduction of the tip clearance height occurred at the leading and trailing edges of the impeller. Because of the reduction of the tip clearance, the tip leakage flow decreased by 19.4%. In addition, the polytrophic efficiency under operating conditions increased by 0.72%. These findings confirm that the prediction of the running tip clearance and its impact on compressor performance is an important area that requires further investigation.

Performance Assessment of Turbulence Models for the Prediction of Tip Leakage Flow in an Axial-Flow Turbomachinery (축류형 유체기계에서 익단 누설 유동 해석을 위한 난류 모델 성능 평가)

  • Lee, Gong-Hee;Baek, Je-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.12
    • /
    • pp.1655-1666
    • /
    • 2003
  • It is experimentally well-known that high anisotropies of the turbulent flow field are dominant inside the tip leakage vortex, which is attributable to a substantial proportion of the total loss and constitutes one of the dominant mechanisms of the noise generation. This anisotropic nature of turbulence invalidates the use of the conventional isotropic eddy viscosity turbulence models based on the Boussinesq assumption. In this study, to check whether an anisotropic turbulence model is superior to the isotropic ones or not, the results obtained from the steady-state Reynolds averaged Navier-Stokes simulations based on the RNG k-$\varepsilon$ model and the Reynolds stress model (RSM) are compared with experimental data for two test cases: a linear compressor cascade and a forward-swept axial-flow fan. Through this comparative study of turbulence models, it is clearly shown that the RSM, which can express the production term and body-force term induced by system rotation without introducing any modeling, should be used to predict quantitatively the complex tip leakage flow, especially in the rotating environment.

Structure of Tip Leakage Flow in a Forward-Swept Axial-Flow Fan (전향 축류형 홴에서의 익단 누설 유동 구조)

  • Lee, Gong-Hee;Myung, Hwan-Joo;Baek, Je-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.7
    • /
    • pp.883-892
    • /
    • 2003
  • The experiment using three-dimensional laser Dopperr velocimetery (LDV) measurements and the computation using the Reynolds stress model of the commercial code, FLUENT, were conducted to give a clear understanding on the structure of tip leakage flow in a forward-swept axial-flow fan operating at the maximum efficiency condition. The tip leakage vortex was generated near the position of the minimum wall static pressure, which was located at approximately 12% chord downstream from the leading edge of blade suction side, and developed along the centerline of the pressure trough within the blade passages. A reverse flow between the blade tip region and the casing, induced by tip leakage vortex, acted as a blockage on the through-flow. As a result, high momentum flux was observed below the tip leakage vortex. As the tip leakage vortex proceeded to the aft part of the blade passage, the strength of tip leakage vortex decreased due to the strong interaction with the through-flow and casing boundary layer, and the diffusion of tip leakage vortex caused by high turbulence. In comparison with LDV measurement data, the computed results predicted the complex viscous flow patterns inside the tip region, including the locus of tip leakage vortex center, in a reliable level.

Effects of the Inlet Boundary Layer Thickness on the Flow in an Axial Compressor (I) - Hub Corner Stall and Tip Leakage Flow - (입구 경계층 두께가 축류 압축기 내부 유동에 미치는 영향 (I) - 허브 코너 실속 및 익단 누설 유동 -)

  • Choi, Min-Suk;Park, Jun-Young;Baek, Je-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.8 s.239
    • /
    • pp.948-955
    • /
    • 2005
  • A three-dimensional computation was conducted to understand effects of the inlet boundary layer thickness on the internal flow in a low-speed axial compressor operating at the design condition($\phi=85\%$) and near stall condition($\phi=65\%$). At the design condition, the flows in the axial compressor show, independent of the inlet boundary layer thickness, similar characteristics such as the pressure distribution, size of the hub comer-stall, tip leakage flow trajectory, limiting streamlines on the blade suction surface, etc. However, as the load is increased, the hub corner-stall grows to make a large separation region at the junction of the hub and suction surface for the inlet condition with thick boundary layers at the hub and casing. Moreover, the tip leakage flow is more vortical than that observed in case of the thin inlet boundary layer and has the critical point where the trajectory of the tip leakage flow is abruptly turned into the downstream. For the inlet condition with thin boundary layers, the hub corner-stall is diminished so it is indistinguishable from the wake. The tip leakage flow leans to the leading edge more than at the design condition but has no critical point. In addition to these, the severe reverse flow, induced by both boundary layer on the blade surface and the tip leakage flow, can be found to act as the blockage of flows near the casing, resulting in heavy loss.

Numerical Study on Tip Clearance Effect on Performance Characteristics of a Centrifugal Compressor for a R134a Turbo-Chiller (R134a 터보냉동기용 원심압축기의 익단간극이 성능특성에 미치는 영향에 관한 수치해석적 연구)

  • Lee, Kyoung-Yong;Choi, Young-Seok;Park, Woon-Jean
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.6 s.27
    • /
    • pp.38-44
    • /
    • 2004
  • In this study, the overall performance and the effect of the tip leakage flow of the centrifugal compressor with a refrigerant HFC-l34a were numerically studied using CFX-TASCflow. To study the effect of the tip leakage flow, the numerical study of the overall performance of HFC-l34a centrifugal compressor with a cascade diffuser was preceded and compared with the experimental result. Six different tip clearances were used to consider the influence of the tip clearance on the performance. The tip leakage flow was illustrated for qualitative discussion. The results obtained in this study can be applied to the determination of the cold clearance.

A Numerical Study on the Effect of Tip Clearance on the Performance of Turbine Rotor (터빈 로터의 익단 간극이 성능에 미치는 영향에 대한 수치해석적 연구)

  • Kang, Young-Seok;Kang, Shin-Hyoung;Cho, Hyung-Hee
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.2 s.15
    • /
    • pp.7-14
    • /
    • 2002
  • The effect of tip clearance is important part for turbomachinery performance. Tip leakage flow due to tip clearance is mixed with passage vortex. Large amount of loss is generated at the mixing region and overall performance of turbomachinery is reduced. Numerical calculation of the 1st stage rotor of GE7FA gas turbine is carried out to investigate tip clearance effect on performance, pitchwise variations of velocity profiles, pressure distributions and loss coefficients. A commercial code, CFX-TascFlow is validated in this study.

Numerical Study on Tip Clearance Effect on Performance Characteristics of a Centrifugal Compressor for a R134a Turbo-Chiller (R134a 터보냉동기용 원심압축기의 익단간극이 성능특성에 미치는 영향에 관한 수치해석적 연구)

  • Lee, Kyoung-Yong;Choi, Young-Seok;Park, Woon-Jean
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.451-456
    • /
    • 2003
  • In this study, the overall performance and the effect of the tip leakage flow of the centrifugal compressor with the refrigerant HFC-l34a were numerically studied using CFX-TASCflow. To study the effect of a tip leakage flow, the numerical study of the overall performance of HFC-l34a centrifugal compressor with a cascade diffuser was preceded and compared with experimental result. Six different tip clearances were used to consider the influence of a tip clearance on performance. The tip leakage flow was illustrated for qualitative discussion. The results obtained in this study can be applied to the determination of the cold clearance.

  • PDF

Numerical Study on Tip Clearance Effect on Performance of a Centrifugal Compressor (익단간극이 원심압축기 성능에 미치는 영향에 관한 수치해석적 연구)

  • Eum, Hark-Jin;Kang, Shin-Hyoung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.3
    • /
    • pp.389-397
    • /
    • 2003
  • Effect of tip leakage flow on through flow and performance of a centrifugal compressor impeller was numerically studied using CFX-TASC flow. Seven different tip clearances were used to consider the influence of tip clearance on performance. Secondary flow and loss factor were evaluated to understand the loss mechanism inside the impeller due to tip leakage flow. The calculated results were circumferentially averaged along the passage and at the impeller exit for quantitative discussion. Tip clearance effect on Performance could be decomposed into inviscid and viscous components using one dimensional equation. The inviscid component is related with the specific work reduction and the viscous component is related with the additional entropy generation. Two components affected Performance equally. while efficiency drop was mainly influenced by viscous loss. Performance and efficiency drop due to tip clearance were proportional to the ratio of tip clearance to exit blade height. A simple model suggested in the present study predict performance and efficiency drop quite successfully.

NUMERICAL STUDY OF NON-UNIFORM TIP CLEARANCE EFFECTS ON THE PERFORMANCE AND FLOW FIELD IN A CENTRIFUGAL COMPRESSOR (비균일 익단간극이 원심압축기의 성능과 유동에 미치는 영향에 대한 수치해석적 연구)

  • Jung, Y.H.;Park, J.Y.;Choi, M.;Baek, J.H.
    • Journal of computational fluids engineering
    • /
    • v.18 no.1
    • /
    • pp.7-12
    • /
    • 2013
  • This paper presents a numerical investigation of the influences of various non-uniform tip clearances on the performance and flow field in a centrifugal compressor. Numerical simulations were conducted for three centrifugal compressor impellers in which the tip clearance height varied linearly from the leading edge to the trailing edge. The numerical result was compared with the experimental data for validation. Although the performance improved for low tip clearances, a smaller tip clearance at the trailing edge reduced the overall tip leakage flow more effectively than a smaller tip clearance at the leading edge. Therefore, a smaller tip clearance at the trailing edge lowered the mixing loss caused by interactions between the tip leakage flow and the main passage flow.