• Title/Summary/Keyword: 이층류 유동

Search Result 3, Processing Time 0.019 seconds

Computation of Two-Fluid Flows with Submerged hydrofoil by Interface Capturing Method (접면포착법에 의한 수중익 주위의 이층류 유동계산)

  • 곽승현
    • Journal of Korean Port Research
    • /
    • v.13 no.1
    • /
    • pp.167-174
    • /
    • 1999
  • Numerical analysis of two-fluid flows for both water and air is carried out. Free-Surface flows with an arbitrary deformation have been simulated around two dimensional submerged hydrofoil. The computation is performed using a finite volume method with unstructured meshes and an interface capturing scheme to determine the shape of the free surface. The method uses control volumes with an arbitrary number of faces and allows cell-wise local mesh refinement. the integration in space is of second order based on midpoint rule integration and linear interpolation. The method is fully implicit and uses quadratic interpolation in time through three time levels The linear equation systems are solved by conjugate gradient type solvers and the non-linearity of equations is accounted for through picard iterations. The solution method is of pressure-correction type and solves sequentially the linearized momentum equations the continuity equation the conservation equation of one species and the equations or two turbulence quantities.

  • PDF

A FUNDAMENTAL STUDY ON THE NUMERICAL SIMULATION OF WAVE BREAKING PHENOMENON AROUND THE FORE-BODY OF SHIP (선수주위 쇄파현상의 수치시뮬레이션에 관한 기초연구)

  • Eom T.J.;Lee Y.-G.;Jeong K.-L.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.195-199
    • /
    • 2005
  • Wave breaking phenomenon near the fore body of a ship is numerically simulated. The ship advance with uniform velocity in calm water. For the simulation, incompressible Navier-Stokes equations and continuity equation are adopted as governing equations. The simulation is carried out in staggered variable mesh system with finite difference method. Marker and Cell(MAC) method and Marker-Density method are employed to track the free surface. Body boundary conditions are satisfied with the adoption of porosity method and no-slip condition on the hull surface. The ship model has a wedge type fore-body, and the computational domain is an appropriate region around the fore-body. The computation results are compared with some experimental results. Also the difference of the free surface tracking methods are discussed.

  • PDF

NUMERICAL SIMULATION ON THE FLOW PHENOMENON OF SEDIMENT INHALATION BY DIFFERENCE OF WATER HEAD (수두차를 이용한 해저퇴적물 흡입현상의 수치시뮬레이션)

  • Jeong K.-L.;Lee Y.-G.;Jeong Uh-Cheul;Son Choong-Yul
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.213-217
    • /
    • 2005
  • In this study the water including sediment is assumed that the density is different from fresh water. And the phenomenon inhaled by low pressure around the pipe is numerically simulated in two dimension. The simulation is done using finite difference method in rectangular staggered mesh system and Navier-Stokes equations and continuty equation are employed as governing equations. The method of Irregular leg lengths and stars are adopted to satisfy boundary condition of body boundary. Marker-Density method is used to calculate the density of mixed flow. Also SGS turbulence model is applied to consider vortex smaller then grid at high Renolds number. This study is to analyze inhalation phenomenon of mixed flow with sediment and to verify the numerical method for mixed flow. To verify the numerical results are compared with experimental results

  • PDF