• Title/Summary/Keyword: 이착륙

Search Result 223, Processing Time 0.024 seconds

Improvement of Ortho Image Quality by Unmanned Aerial Vehicle (UAV에 의한 정사영상의 품질 개선 방안)

  • Um, Dae-Yong;Park, Joon-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.568-573
    • /
    • 2018
  • UAV(Unmanned Aerial Vehicle) is widely used in space information construction, agriculture, fisheries, weather observation, communication, and entertainment fields because they are cheaper and easier to operate than manned aircraft. In particular, UAV have attracted much attention due to the speed and cost of data acquisition in the field of spatial information construction. However, ortho image images produced using UAVs are distorted in buildings and forests. It is necessary to solve these problems in order to utilize the geospatial information field. In this study, fixed wing, rotary wing, vertical take off and landing type UAV were used to detect distortions of ortho image of UAV under various conditions, and various object areas such as construction site, urban area, and forest area were captured and analysed. Through the research, it was found that the redundancy of the unmanned aerial vehicle image is the biggest factor of the distortion phenomenon, and the higher the flight altitude, the less the distortion phenomenon. We also proposed a method to reduce distortion of orthoimage by lowering the resolution of original image using DTM (Digital Terrain Model) to improve distortion. Future high-quality unmanned aerial vehicles without distortions will contribute greatly to the application of UAV in the field of precision surveying.

Study for Aerodynamic and Aeroacoustic Characteristics of Multirotor Configurations Considering the Wake Interaction Effect (멀티로터형 비행체의 후류 상호작용을 고려한 공력 및 공력소음 해석 연구)

  • Ko, Jeongwoo;Kim, Dong Wook;Lee, Soogab
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.7
    • /
    • pp.469-478
    • /
    • 2019
  • Multirotor configurations such as VTOL and urban air mobility have been focused on today due to the high maneuverability. Aerodynamic and aeroacoustic characteristics of multirotor have much difference to those of a single rotor. In this study, a numerical analysis based on the free wake vortex lattice method is used for identifying the wake interaction effect. In order to compare the various configurations and operating conditions, the effects of the spacing between the rotors in hovering flight and the effects of the advancing ratio and the formation in forward flight are discussed. In the hovering flight, the unsteady loading of multirotor changes periodically and loading fluctuation increases as decreasing the spacing. It causes the variation in unsteady loading noise and the noise directivity pattern. In the forward flight, the difference in loading fluctuation and noise characteristics are observed according to the diamond and square formation of rotors. By comparing with results of single rotor analysis, multirotor configurations have different directivity pattern and amplitude of loading noise according to the location of each rotor. As a result, wake interaction effect becomes a highly important factor for aerodynamic and aeroacoustic analysis according to multirotor configurations and operating conditions.

A Study on the Improvement of Domestic Navigation Safety System: Focused on the Implementation of Korea Augmentation Satellite System (국내 항행안전시스템의 개선에 관한 연구: 한국형 정밀위성항법 보강시스템의 구축을 중심으로)

  • Kim, Yeong-Pil;Hwang, Kyung Tae
    • Journal of Digital Convergence
    • /
    • v.19 no.2
    • /
    • pp.221-230
    • /
    • 2021
  • The study attempts to suggest potential problem and solutions expected in the process of implementing KASS, which is currently under development to improve the domestic navigation safety system, and to summarize improvement effects of domestic navigation safety system anticipated by the implementation of KASS. Challenges expected in the process of implementing KASS exists in four aspects: emotional, technical, cost, safety aspects. When KASS is implemented and operates, various benefits can be realized. Benefits include cost savings by not using navigation safety systems during takeoff and landing; reduction of flight delays and cancellations by removing airway congestion; increase of aircraft accommodation capacity; reduction of carbon emissions; preparation for future aviation demands and improvement of air transportation safety; and reduction of flight accidents. In conclusion, it is expected to enter into an era of more intense competition due to increased aviation demands. In order to survive in this competitive environment, early introduction of KASS is indispensable. Analysis results of this study are expected to provide reference information for academic research in this area. A possible future research topic include a study predicting the changes in the navigation safety systems introduced by KASS and proposing practical and useful ways to respond the changes.

Development of Preliminary Conceptual Design/ Comprehensive Analysis Programs for Next Generation Rotorcraft (차세대 회전익 기본개념설계/통합해석 프로그램의 개발)

  • Oh, Sejong;Park, Donghoon;Ji, Hyung Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.1
    • /
    • pp.75-84
    • /
    • 2021
  • The authors had presented two previous papers[1,2] on Helicopter/Rotorcraft develoment in Europe and US. Meanwhile, the next generation rotorcrafts, currently under development in US and Europe, have new configurations (tilt-rotor, coaxial, compound) of rotor-type vertical takeoff/landing rotorcrafts to overcome the disadvantages of traditional helicopters. For developing these new types of rotorcrafts, the upgraded conceptual design/comprehensive programs are required. In US and Europe, they are already developing new program tools with their technologies and database obtained during more than last half centuries. For us, many academia, research institutes and industrial engineers have experienced and developed core technologies on rotorcrafts (aerodynamics, structural analysis, flight dynamics, and noise analysis etc.) comparable to US and Europe during last couple of decades of developing helicopters and various configurations of rotorcrafts. In this paper, the pros and cons of conceptual design/comprehensive tools currently used in US and Europe have been summarized. Furthermore, the possibilities and problems to develope our own design and analysis tools have been studied.

The Show up Time in the Development of the Korean Pilots Fatigue Management Program (한국형 운항승무원 피로관리 프로그램의 출두시간에 관한 연구)

  • Lee, Seungyoung;Chung, Seung Sup;Kim, Hyeon Deok
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.4
    • /
    • pp.280-285
    • /
    • 2021
  • The significance of pilots' fatigue and the attributed risk management had continuously increased over time as the airline industry expanded. Research and legislation efforts associated with pilot fatigue are being taking place actively all over the world. In the developed world such as the United States and European Union etc., the airline pilot fatigue is already being managed by considering the show up time, the number of take offs and landings made, resting period, jet lag etc., when computing flight duty time. In Korea, the flight duty time is only limited by the total number of hours per given period regardless of the flight conditions and environment. Such lack of regulation demand development of a fatigue management program. According to the survey taken from the airline pilots in Korea, it has been found that acquiring foreign policies directly may in turn, increase the risk of fatigue. This research suggest future studies regarding fatigue management program adapted exclusively to Korean domestic flight environment and culture.

Experimental Study on Aerodynamic Performance and Wake Characteristics of the Small Ducted Fan for VTOL UAV (수직 이착륙 무인기용 소형 덕티드팬의 공력성능 및 후류특성에 관한 실험적 연구)

  • Shin, Soo-Hee;Lee, Seung-Hun;Kim, Yang-Won;Cho, Tae-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.1
    • /
    • pp.1-12
    • /
    • 2022
  • Wind tunnel test for a small scale electric ducted fan with a 104mm diameter was conducted to analyze the aerodynamic characteristics when it was used as a propulsion system of tilt-propeller UAV. Experimental conditions were derived from flight conditions of a sub-scaled OPPAV. Forces and moments of the ducted fan model were measured by a 6-axis balance and 3-dimensional wake vectors which could induce an aerodynamic influence in the vehicle were measured by 5-hole probes. Thrust and torque on hover and cruise conditions were measured and analyzed to drive out the operating conditions when it was applied in the sub-scaled OPPAV. On transition conditions, thrust keep its value with tilt angle variation below 40° and increase after that. But, sideforce increase constantly until 75°. The maximum axial velocity in the wake on hover and cruise conditions was around 60m/s and tangential velocity was around 12m/s. The position of the maximum axial velocity and vortex center move off the fan rotation center line as the tilt angle increases.

Research on The Crash Location and Speed Distribution of Low Altitude Fixed-Wing Aircraft (저고도 운용 고정익 항공기의 고장 시 추락지점 및 속도 분포 연구)

  • Nam, Hong-Su;Park, Bae-Seon;Lee, Hak-Tae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.1
    • /
    • pp.59-66
    • /
    • 2022
  • In order to solve the problem of urban traffic congestion, Urban Air Mobility (UAM) concept using Electric Vertical Take-off and Landing (eVTOL) aircraft has been gaining popularity, and many domestic and international studies are underway. However, since these aircraft inevitably fly over densely populated areas, it is essential to ensure safety, which starts with accurately analyzing the crash risk. In this paper, the locations and impact speeds of crash are computed using six degree-of-freedom simulations of an eVTOL aircraft in a fixed-wing mode. System malfunction was modeled by a sudden loss of thrust with control surfaces being stuck during cruise. Because most of these eVTOL aircraft are still under development, a methodology of constructing a six degree-of-freedom dynamics model from generic specification is also developed. The results show that the crash locations are highly concentrated right under the aircraft within a square that has an edge length similar to the cruise altitude. Speed distribution is more complicated because almost identical crash locations can be achieved by two very different paths resulting in a large variation in the speeds.

A Study on the Certification Standard Analysis and Safety Assurance Method for Electric Propulsion System of the Urban eVTOL Aircraft (도심용 eVTOL 항공기 전기추진시스템 기준 분석 및 안전성 확보 방안에 관한 연구)

  • Kim, Juyoung;Yoo, Minyoung;Gwon, Hyukrok;Gil, Ginam;Gong, Byeongho;Na, Jongwhoa
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.3
    • /
    • pp.42-51
    • /
    • 2022
  • An eVTOL aircraft, which is required to operate with low pollution/low noise in urban environments, mostly use battery-powered electric propulsion systems as power sources, not traditional propulsion systems such as reciprocating or turbine engines. Accordingly, certification preparation for the electric propulsion system and securing the safety of the electric propulsion system, are important issues. In the U.S., special technical standards equivalent to FAR Part 33 were issued to certify electric engines, and in Europe, various special conditions were established to certify electric propulsion systems. Thus, in Korea, the technical standards for the electric propulsion system for eVTOL aircraft must also be prepared in line with the U.S. and Europe. In this paper, SC E-19, the technical standard of the electric/hybrid propulsion system (EHPS) in special conditions, was analyzed. Additionally, securing the safety of the electric propulsion system of the aircraft are proposed, through the collaboration of SC E-19 technical standards with the existing aircraft safety evaluation procedure ARP 4761. Finally, through a case study of the Ehang 184 electric propulsion system, it has been confirmed that the proposed safety assurance method is applicable at the aircraft level.

Unsteady Aerodynamic Characteristics of an Non-Synchronous Heaving and Pitching Airfoil Part 1 : Frequency Ratio (비동기 히브 및 피치 운동에 따른 에어포일 비정상 공력 특성 Part 1 : 진동 주파수 비)

  • Seunghwan Ji;Cheoulheui Han
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.6
    • /
    • pp.54-62
    • /
    • 2023
  • Flapping-wing air vehicles, well known for their free vertical take-off and excellent flight capability, are currently under intensive development and research. While most of the studies have explored the effect of various parameters of synchronized motions on the unsteady aerodynamics of flapping wings, limited attention has been given to the effect of nonsynchronous motions on the unsteady aerodynamic characteristics of flapping wings. In the present study, we conducted a numerical analysis to investigate the unsteady aerodynamic characteristics of an airfoil flapping with different frequency ratios between pitch and heave oscillations. We identified the motions and angle of attacks due to nonsynchronous motions. It was found that the synchronous motion produced thrust with zero lift, but the nonsynchronous motion generated a large lift with little drag. The aerodynamic characteristics of the airfoil undergoing the non-synchronous motion were also analyzed using the vorticity distributions and the pressure coefficient around and on the airfoil. When r was equal to 0.5, larger leading and trailing edge vortices were observed compared to the case when r was equal to 1.0, and these vortices significantly affected the aerodynamic characteristics of the airfoil undergoing the nonsynchronous motion. In future, the effect of pitch amplitude on the unsteady aerodynamic characteristics of the airfoil will be studied.

Receiving System Design of ILS Navigation Signal Using SDR (SDR을 이용한 ILS 항행신호 수신 시스템 설계)

  • Minsung Kim;Ji-hye Kang;Kyung Heon Koo;Kyung-Soon Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.3
    • /
    • pp.254-261
    • /
    • 2024
  • Accurate guidance during landing and take-off is important, and instrument landing system (ILS) has been used for stability and verification. Regular inspections are conducted for stable operation, and there is research to perform inspection using drones in addition to ground vehicles and measurement aircraft. Using SDR and single board computer, which can receive wide frequency range, we designed a small system that receives and processes localizer signals through GNU Radio. To check signal processing characteristics through GNU Radio, we simulated with MATLAB Simulink and confirmed the theoretical values. Difference in depth of modulation (DDM) and approach angle can be calculated when the aircraft enters the runway. And GNU Radio implemented real-time signal processing wirelessly using transmission control protocol (TCP). This gives the results within the error of 0.5% when the aircraft entered the runway center line and 0.27% for the angle of 1° degree. Compared to the inspecting and maintaining ILS signals using aircraft or ground vehicles, it is possible to implement a receiving system using small SDR that can be mounted for drone.