• Title/Summary/Keyword: 이차 유동

Search Result 244, Processing Time 0.023 seconds

Simulation of Turbulent Flow in a Triangular Subchannel of a Bare Rod Bundle with Nonlinear k-$\varepsilon$ Models (비선형 k-$\varepsilon$ 난류모델에 의한 봉다발의 삼각형 부수로내 난류유동 수치해석)

  • Myong Hyon Kook
    • Journal of computational fluids engineering
    • /
    • v.8 no.2
    • /
    • pp.8-15
    • /
    • 2003
  • Three nonlinear κ-ε models with the wall function method are applied to the fully developed turbulent flow in a triangular subchannel of a bare rod bundle. Typical predicted quantities such as axial and secondary velocities, turbulent kinetic energy and wall shear stress are compared in details both qualitatively and quantitatively with both each other and experimental data. The nonlinear κ-ε models by Speziale[1] and Myong and Kasagi[2] are found to be capable of predicting accurately noncircular duct flows involving turbulence-driven secondary motion. The nonlinear κ-ε model by Shih et aL.[3] adopted in a commercial code is found to be unable to predict accurately noncircular flows with the prediction level of secondary flows one order less than that of the experiment.

Numerical Analysis on Effects of the Contoured Endwall on the Three-dimensional Flow Characteristics in a Turbine (끝벽의 형상이 터빈 캐스케이드내 3차원 유동특성에 미치는 영향에 관한 전산해석)

  • Kim, Dae-yu;Chung, Tin-Taek
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.284-289
    • /
    • 2002
  • The objective of this study is to document the secondary flow and the total pressure loss distribution in the contoured endwall installed linear turbine cascade passage and to propose an appropriate height of the contoured endwall which shows the best loss reduction among the simulated contoured endwall. In this study, three different contoured endwalls have been tested which have different height. This study was performed by numerical method and the result showed the contoured endwall which has the height of $5\%$ of the axial chord showed the best loss reduction rate.

  • PDF

Fluid Flow Behaviors around Wedge-shaped Body using Lattice Boltzmann Method (LBM을 이용한 쇄기형 물체 주위의 유동특성)

  • Taher, M.A.;Jung, H.Y.;Lee, Y.W.
    • Journal of Power System Engineering
    • /
    • v.13 no.4
    • /
    • pp.24-30
    • /
    • 2009
  • 본 연구에서는 기존에 널리 사용되어져 온 Wavier-Stokes 방정식을 풀이하는 전통적인 CFD 해석에서 벗어나 최근에 그 응용 분야를 넓혀가고 있는 LBM의 해석코드를 개발하고, 이를 이용하여 이차원 채널속에 놓여진 쇄기형 물체 주위의 유동특성을 조사하였다. D2Q9 격자계 및 Bhatnagar-Gross-Krook (LBGK) 모델을 채택하였으며, 수치해석 결과는 기존의 실험결과의 잘 일치하였다. 쇄기형 물체에서 와의 형성 및 방출 Reynolds 수 범위는 $32{\leq}Re{\leq}620$ 이며, 원형실린더에서 알려진 Karman 와열을 형성하는 주기적인 와방출은 대칭적인 와가 형성된 후 $Re{\geq}85$부터 시작되며 Reynolds 수의 증가에 따라 와 방출 주파수는 증가되었다.

  • PDF

A Rheological Analysis on the Semiconcentrated Fiber Suspensions Including Fiber-fiber Interactions (섬유간 상호작용을 고려한 진한 섬유현탁액에 대한 유변학적 해석)

  • 이성재
    • The Korean Journal of Rheology
    • /
    • v.8 no.1
    • /
    • pp.49-57
    • /
    • 1996
  • 단섬유 강화복합재료의 가공공정에 있어서 유동 중에 일어나는 섬유 배향상태를 정 확히 예측하고 제어하는 일은 대단히 중요하다. 본 연구에서는 섬유현탁액의 거동을 살펴보 기 위하여 뉴톤유체를 매질로하는 섬유현탁액을 대상으로 하여 유변학적 해석을 하였다. 이 를 위해 섬유간 상호계수는 섬유배향상태의 함수의 섬유간 평균거리를 이용하여 계산하였는 데, 섬유간 평균거리는 변형된 Doi-Edwards의 방법을 이용하였다. 축대칭 압출팽창 문제를 예로 수치모사를 하여 본 저자들이 앞서 행한 결과와 비교하였다. 유동장을 축대칭 이차원 으로 하고 섬유배향을 삼차원 모두 고려하여 구한 수치모사의 결과는 실험과 잘 일치하였 다. 진한 섬유현탁액의 경우 섬유간 상호계수는 중요한 인자로서 이것을 섬유 배향상태에 의존하는데 이섬유간 상호계수를 섬유간 거리와 섬유배향상태의 함수로 나타내는 방법을 사 용하여 보다 실제적인 해석을 할수 있었다.

  • PDF

DEVELOPMENT OF AN UNSTRUCTURED OVERSET MESH METHOD FOR 2-D UNSTEADY VISCOUS FLOW ANALYSIS (이차원 비정상 점성 유동 해석을 위한 비정렬 중첩격자기법 개발)

  • Jung M. S.;Kwon O. J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.135-139
    • /
    • 2005
  • An unstructured overset mesh method has been developed for the simulation of unsteady viscous flow fields around multiple bodies in relative motion. For this purpose, a robust and fast search technique is proposed for both triangle and high-aspect quadrilateral cell elements. The interpolation boundary is defined for data communication between grid systems and an interpolation method is suggested for viscous and inviscid cell elements. This method has been applied to calculate the flow fields around 2-D airfoil including relative motion. Validation were made by comparing the predicted results with those of experiments or other researcher's numerical results. It was demonstrated that the present method is efficient and robust for the prediction of unsteady time-accurate flow fields involving multiple bodies in relative motion.

  • PDF

FLOW INSTABILITY IN A BAFFLED CHANNEL FLOW (배플이 부착된 채널 유동의 불안정성)

  • Kang, C.;Yang, K.S.
    • Journal of computational fluids engineering
    • /
    • v.16 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • Flow instability is investigated in a two-dimensional channel with thin baffles placed symmetrically in the vertical direction and periodically in the streamwise dircetion. At low Reynolds numbers, the flow is steady and symmetric. Above a critical Reynolds number, the steady flow undergoes a Hopf bifurcation leading to unsteady periodic flow. As Reynolds number further increases, we observe the onset of secondary instability. At high Reynolds numbers, the two-dimensional periodic flow becomes three dimmensional. To identify the onset of secondary instability, we carry out Floquet stability analysis. We obseved the transition to 3D flow at a Reynolds number of about 125. Also, we computed dominant spanwise wavenumbers near the critical Reynolds number, and visualized vortical structures associated with the most unstable spanwise wave.

Prediction of a Backward-Facing Step Flow with Modified Turbulence Models (수정 난류모델에 의한 후향계단 유동예측)

  • 명현국;백인철;한화택
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.3039-3045
    • /
    • 1994
  • The k-$\varepsilon$ turbulence models by Launder et al.(1977, LPS) and Leschziner and Rodi(1981, LR) are modified to account for the secondary straining effect with having a generality in the present paper. The modified models are obtained by replacing the gradient Richardson number used to account for the secondary straining effect in the original models by a new parameter with a tensor-invariant correction form. These two modified models are used to predict the turbulent flow over a backward-facing step. In contrast to both standard and modified LR models, the modified LPS model is found to predict the reattachment point fairy well, as well as mean velocity, wall static pressure, turbulent kinetic energy and Reynolds shear stress in the recirculating region.

Temperature Preconditioning for Improving Convergence Characteristics in Calculating Low Mach Number Flows, I: Euler Equations (저속 유동 계산의 수렴성 개선을 위한 온도예조건화 I: 오일러 방정식)

  • Lee, Sang-Hyeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.12
    • /
    • pp.1067-1074
    • /
    • 2007
  • A temperature preconditioning that modulates the derivative of density with respect to temperature is proposed to improve the convergence characteristics of the preconditioned Euler equations. Flows in a two-dimensional channel with a 10% circular bump in the middle of the channel were calculated at different speeds. The numerical dissipation terms of the Roe’s FDS scheme according to the temperature preconditioning are derived. It is shown that the temperature preconditioning accelerates convergence of the preconditioned Euler equations.

Numerical Analysis on Effects of the Boundary Layer Fence on the Three-dimensional Turbulent Flow in a Turbine Cascade (경계층내 장애물이 터빈 캐스케이드내 3차원 난류유동에 미치는 영향에 관한 전산해석)

  • Lee, Sangil;Chung, J. T.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.287-292
    • /
    • 2001
  • The objective of this study is to verify the secondary flow and the total pressure loss distribution in the boundary layer fence installed linear turbine cascade passage and to propose an appropriate height of the boundary layer fence which shows the best loss reduction among the simulated fences. In this study three different boundary layer fence was installed which have different height. This study was performed by numerical method and the result showed the boundary layer fence which has the height of one third of the inlet boundary layer thickness showed the best loss reduction rate.

  • PDF

Steam Turbine Design Using 3-Dimensional Flow Analysis (3차원 유동 해석을 이용한 증기 터빈 설계)

  • Kwon, G.B.;Kim, Y.S.;Cho, S.H.;Im, H.S.;Nah, U.H.;Kim, H.M.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.312-317
    • /
    • 2000
  • High efficient steam turbine stage has been developed with the help of the 3-dimensional design tool. In this stage design, the compound leaned stacking method has been adopted to reduce the secondary flow loss of a turbine passage and to increase the performance efficiency for the turbine nozzles. And the turbine buckets have been designed with the quasi-3-dimensional turbomachinery blade design method. To verify the stage design, therefore, the 3-dimensional numerical simulation of a steam turbine stage was conducted. In this design, CFX-TASCflow was employed to predict the turbulent flow of a steam turbine stage. The analysis was performed in parallel calculation using the HP N4000 8 CPUs machine. The result showed CFX-TASCflow could be used as the 3-dimensional flow analysis tool of steam turbine design.

  • PDF