• 제목/요약/키워드: 이질적 자기회귀모형

검색결과 3건 처리시간 0.016초

국내 주식시장 변동성에 대한 국제유가의 영향: 이질적 자기회귀(HAR) 모형을 사용하여 (An Analysis of the Effects of WTI on Korean Stock Market Using HAR Model)

  • 김형건
    • 자원ㆍ환경경제연구
    • /
    • 제30권4호
    • /
    • pp.535-555
    • /
    • 2021
  • 본 연구는 국내 주식시장 변동성에 대한 국제유가의 영향을 실증적으로 분석한다. 분석을 위해 사용된 자료는 2015년 1월 2일부터 2021년 7월 30일까지 KOSPI 지수와 WTI 선물가격의 10분 주기 고빈도 자료이다. 이를 사용하기 위해서는 이질적 자기회귀(HAR) 모형을 사용하였다. 분석 모형에서는 고빈도 자료의 장점을 살려 국제유가의 영향을 수익률뿐 아니라 실현 변동성, 실현 왜도 및 첨도를 통해 확인한다. 추정에는 큰 왜도를 갖는 실현 변동성 분포를 감안하여 Box-Cox 변환을 적용하였다. 추정 결과, WTI 가격의 일간 수익률 변동은 KOSPI 수익률의 변동성에 통계적으로 유의한 양(+)의 영향을 미치는 것으로 나타났다. 하지만 WTI 수익률의 변동성, 왜도, 첨도는 KOSPI 수익률의 변동성에 영향을 주지 않는 것으로 나타났다. 이와 같은 결과는 KOSPI 수익률의 변동성이 거래 시간의 시차를 갖는 WTI 수익률의 일간 변화는 반영하지만 투자자의 일중 거래 행태까지는 반영하지 않기 때문으로 판단된다.

공간자기회귀모형을 이용한 고속도로 교통사고 분석 (Traffic Accidents Analysis on Expressway using Spatial Autoregressive Model)

  • 강경우
    • 대한교통학회지
    • /
    • 제15권1호
    • /
    • pp.5-15
    • /
    • 1997
  • 공간통계분석은 공간적으로 연계된 변수들간의 관계를 분석하는 통계분야이다. 일 반적으로 공간적으로 연계된 변수들간의 관계는 각 변수간의 공간적 분포정도에 따라서 영 향을 받는다. 전통적인 통계 분석의 방법은 동질의 자료발생과정에 의하여 확률적으로 축출 된 표본자료를 가정하고 있으나, 공간적인 자료는 이와 같은 동질의 자료발생과정의 가정을 부정한다. 교통류 및 교통사고 등과 같은 교통분야의 자료는 대부분 공간적인 상관관계에 의하여 축출된 이질적인 표본자료이며 따라서 공간상관관계를 동질적으로 가정한 전통적인 통계적 분석 방법은 오류를 범할 수 있다. 본 논문은 공간적인 관계를 고려한 공간자기상관 분석기법을 이용하여 고속도로상의 교통사고에 관하여 분석하였다. 분석의 결과에 의하면 4 개 고속도로 중 경인고속도로를 제외한 3개의 고속도로상의 교통사고건수는 통계적으로 현 저한 양의 공간적 상관관계가 있음을 알 수 있었다. 이에 따라 공간적 상관관계를 고려한 교통사고분석을 위하여 종속변수로 단위구간별 교통사고건수를 그리고 설명변수로서는 단위 구간별 교통량, I.C. 유무 및 화물차량비율을 이용하여 공간 자기회귀분석을 시도하였다. 분 석의 분석에서는 구간별 교통량과 화물차량의 비율이 호남/남해 고속도로의 경우에는 구간 별 교통량과 I.C. 유무가 통계적으로 유의한 것으로 분석되었다.

  • PDF

한국 COVID-19 확진자 수에 대한 시계열 분석: HAR-TP-T 모형 접근법 (Time series analysis for Korean COVID-19 confirmed cases: HAR-TP-T model approach)

  • 유성민;황은주
    • 응용통계연구
    • /
    • 제34권2호
    • /
    • pp.239-254
    • /
    • 2021
  • 이 논문에서는, 2개의 혼합된 t-분포(TP-T)의 오차과정을 따르는 이질적 자기회귀 (HAR) 모형을 이용하여, 한국 코로나 (COVID-19) 확진자 수 데이터에 대한 시계열 분석, 즉 추정과 예측에 대하여 연구한다. HAR-TP-T 시계열 모형을 고려하여 HAR 모형의 계수 뿐 아니라 TP-T 오차과정의 모수를 추정하고자 단계별 추정법을 제안한다. 본 연구에서 제안하고 있는 단계별 추정법은, HAR 계수 추정을 위해서는 통상적 최소제곱추정법을 채택하고, TP-T 모수 추정을 위해서는 최대우도추정법을 이용한다. 단계별 추정법에 대한 모의실험을 수행하여, 성능이 우수함을 입증한다. 한국 코로나 확진자 수에 대한 실증적 데이터 분석에서, HAR 모형에서의 차수 p = 2, 3, 4에 대해, 모형의 평균제곱오차가 최소가 되도록 하는 최적화 시간간격(optimal lag)을 포함하여, 여러가지 시간간격을 고려한 HAR-TP-T 모형의 모수 추정값을 계산한다. 제안된 단계별 추정방법과 기존의 MLE만의 방법을, 추정 결과를 제시함으로 함께 비교한다. 본 연구에서 제안하고 있는 추정은 두 가지의 오차 측면, 즉 HAR 모형의 평균제곱오차와 잔차분포에 대한 밀도함수 추정의 평균제곱오차, 두 측면에서 모두 우수함을 입증하였다. 나아가, 추정 결과를 활용한 코로나 확진자 수 예측을 수행하였고, 예측정확도의 한 측도로서 mean absolute percentage error (MAPE)를 계산하여 0.0953%의 매우 작은 오차값을 얻었다. 본 연구에서 선택한 최적화 시간간격을 고려한 HAR-TP-T 시계열 모형 및 단계별 추정 방법은, 정확한 한국 코로나 확진자 수 예측 성능을 제공한다고 할 수 있다.