• Title/Summary/Keyword: 이진 위상 홀로그램

Search Result 34, Processing Time 0.019 seconds

An implementation of the efficient optical perfect shuffle interconnection with block-quantized binary phase hologram (Block-Quantized 이진 위상 홀로그램을 이용한 효율적인 광학적 perfect shuffle의 구현)

  • Kim, Hee-Ju;Huh, Hyun;Pan, Jae-Kyung
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.5
    • /
    • pp.125-131
    • /
    • 1996
  • In this paper, we introduced the BQBPH method for making the grating of high efficiency which was improtant in implementing optical PS. The pattern of graing was obtianed by computer simulations using iterative method, and the diffraction efficeincy of designed grating was about 67% through BPM simulation. The grating was fabricated by laser beam writer, and the diffraction efficiency BPM simulation. The grating was fabricated by laser beam writer, and the diffraction efficiency was 47%. We implemented the optical PS with the grating and showed that optical experimental output patterns were good agreement with PS output patterns and first order was main diffraction order.

  • PDF

The Characteristics and Optical Implementation of OA-pSDF BPOF (OA-pSDF BPOF의 특성 및 광학적 구현)

  • 임종태;박성균;엄주욱;박한규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.8
    • /
    • pp.1433-1445
    • /
    • 1994
  • In this paper, an coherent optical correlator system based on the off-axis projection synthetic discriminant funtion (OA-pSDF) was analyzed and implemented optically. The filter was synthesized by combining conventional pSDF with single reference plane wave multiplexing. Synthesized pSDF were transformed to binary phase only filters (BPOFs) and fabricated as computer generated holograms(CGHs), which was used in the real time optical correlator system instead of using expensive spatial light modulators(SLMs). From the characteristic test, it was found that OA-pSDF showed distortion invariance and good performances in discrminating subset images. The proposed OA-pSDF BPOF could overcome the limitations of conventional BPOFs : that is distortion variance such as acale and rotation, especially out of plane variance.

  • PDF

Parabolic mirror test using Computer Generated Hologram (Computer Generated Hologram을 이용한 포물명경 형상측정)

  • 김성하;곽종훈;최옥신;송재봉;이윤우;이인원
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.2
    • /
    • pp.80-84
    • /
    • 2000
  • Parabolic almninium mlITOr of m.5('||'&'||'cent; 50 nun) was fabncated by a diamond tummg machine. Computer generated hologram (CGH) for the test of parabolic mirror was encoded by binary phase hologram Approximation of curved fringe to line was made by staircase encoding. After fringe data 1ransformed mto a Post Scnpt file. magnified master CGH was printed by a laser printer, and then it reduced to the photographIc film. Parabolic mirror was tested by Twyman-Green interferometer with CGH at VIewing arm. Its experimental result was compared with those of surface profile and auto-collimatIon test, and then the errors were analyzed.

  • PDF

Optical Visual Cryptography using the Characteristics of Spatial Light Modulation (공간광변조 특성을 이용한 광비쥬얼 크립토그래피)

  • Yi, Sang-Yi;Wi, Sung-Min;Lee, Seung-Hyun;Yoo, Ji-Sang;Kim, Dong-Wook
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.3
    • /
    • pp.202-207
    • /
    • 2007
  • Optical visual cryptography (OVC) based on binary computer generated holograms (BCGH) is proposed. OVC used optics instead of human eyesight for decryption of visual cryptography (VC). As a result, it was possible to adapt cryptography to an optical system. However, it also had some difficulties because it did not overcome the existing problems of VC completely. This paper suggests a method of optical cryptography implementation based on the phase modulation characteristics of a liquid crystal display (LCD). The problems are evaluated by simulation. This system shows that the noise is reduced and resolution is improved compared with the conventional OVC.