• 제목/요약/키워드: 이진신경망

검색결과 187건 처리시간 0.029초

인공신경망 모델을 이용한 온돌시스템의 최적 제어에 관한 연구 (A Study on the Optimal Control of Ondol System Using Artificial Neural Network)

  • 양인호;이진영;김광우
    • 설비공학논문집
    • /
    • 제12권7호
    • /
    • pp.680-687
    • /
    • 2000
  • The objective of this study is to improve the control performance of Ondol system which causes overheating and underheating with 2-position on/off control. For this, a predictive control that determines the suitable on/off positions using Artificial Neural Network(ANN) model was proposed Dynamic analyses using computer simulation show that the neural network used in the predictive control is adapted to each room whose loads variation and thermal characteristics are different. To examine the applicability of this predictive control with ANN it was compared with 2-position on/off control through experiments.

  • PDF

이산시간 2차원 학습 신경망 알고리즘을 이용한 전기$\cdot$유압 서보시스팀의 제어 (Control of a Electro-hydraulic Servo System Using Recurrent Neural Network based 2-Dimensional Iterative Learning Algorithm in Discrete System)

  • 곽동훈;조규승;정봉호;이진걸
    • 한국정밀공학회지
    • /
    • 제20권6호
    • /
    • pp.62-70
    • /
    • 2003
  • This paper deals with a approximation and tracking control of hydraulic servo system using a real time recurrent neural networks (RTRN) with 2-dimensional iterative learning rule. And it was driven that 2-dimensional iterative learning rule in discrete time. In order to control the trajectory of position, two RTRN with same network architecture were used. Simulation results show that two RTRN using 2-D learning algorithm is able to approximate the plant output and desired trajectory to a very high degree of a accuracy respectively and the control algorithm using two same RTRN was very effective to control trajectory tracking of electro-hydraulic servo system.

2차원 학습 회귀적 신경망을 이용한 전기.유압 서보시스템의 실시간 추종 (Real-time Approximation of a Hydraulic Servo System Using a Recurrent Neural Network with 2-D Learning Algorithm)

  • 정봉호;곽동훈;이춘태;이진걸
    • 한국정밀공학회지
    • /
    • 제20권8호
    • /
    • pp.94-100
    • /
    • 2003
  • This paper presents the experiments on the approximation of a hydraulic servo system using a real time recurrent neural networks (RTRN) with time varying weights. In order to verify the effectiveness of the RTRN algorithm in hydraulic servo system, we design the experimental hydraulic system and implemented the real time approximation of system output. Experimental results show that approximated output of the RTRN well follows the position trajectory of the electro-hydraulic servo system. And also it is verified that the 2-D RNN can be implemented in sampling time even though high sampling frequency experimentally.

2차원 반복 학습 신경망을 이용한 전기.유압 서보시스템의 제어 (Control of an Electro-hydraulic Servosystem Using Neural Network with 2-Dimensional Iterative Learning Rule)

  • 곽동훈;이진걸
    • 유공압시스템학회논문집
    • /
    • 제1권1호
    • /
    • pp.1-9
    • /
    • 2004
  • This paper addresses an approximation and tracking control of recurrent neural networks(RNN) using two-dimensional iterative learning algorithm for an electro-hydraulic servo system. And two dimensional learning rule is driven in the discrete system which consists of nonlinear output function and linear input. In order to control the trajectory of position, two RNN's with the same network architecture were used. Simulation results show that two RNN's using 2-D learning algorithm are able to approximate the plant output and desired trajectory to a very high degree of a accuracy respectively and the control algorithm using two same RNN was very effective to control trajectory tracking of electro-hydraulic servo system.

  • PDF

뉴스 비디오에서의 효율적인 장면 전환과 앵커 화면 검출 (Efficient Detection of Scene Change and Anchorperson Frame in News Video)

  • 강현철;이진성;이완주
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제32권12호
    • /
    • pp.1157-1163
    • /
    • 2005
  • 본 논문에서는 방대한 양의 방송 데이타를 처리하기 위하여 MPEG(Motion Picture Expert Group) 스트림 비디오에서 빠르고 효과적으로 비디오를 분할하는 기법을 제안한다. 이를 위해, MPEG 압축 도메인에서 최소 디코딩을 수행하여 I-프레임의 DC 이미지를 추출함으로써 통해 실행 시간을 단축하고, 밝기 정보와 색상 정보를 함께 고려한 변형된 히스토그램 비교법을 도입하여 장면전환을 빠르고 정확하게 검출하였다. 그리고 추출된 장면전환에 대해 앵커 프레임과 비앵커 프레임을 구별하기 위해 신경망 기법을 도입하였다.

신경망을 이용한 정상·비정상 얼굴유형 탐지 연구 (A Research on Anomaly type of face detection using Neural Network)

  • 김운영;원일용
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2009년도 추계학술발표대회
    • /
    • pp.623-624
    • /
    • 2009
  • 본 논문에서는 신경망의 오류 역전파(Backpropagation) 학습 알고리즘을 이용한 얼굴의 정상 비정상을 인식하는 보안 시스템을 제안하였다. 제안된 시스템은 정지영상 및 동영상에서 입력된 얼굴영상을 전처리 단계에서 얼굴영역을 검출하여 $160{\times}160$ 크기의 고정 크기로 확대 및 축소 작업을 거친다. Mosaic 처리와 LaplacianEdge 처리를 거쳐 $40{\times}40$ 크기로 이진화한 정규화 데이터를 Gravity-Center 처리를 한다. 오류 역전파 학습 알고리즘으로 얼굴의 특징을 학습한 후 각종 정상 및 비정상 얼굴 데이터를 이용하여 인식률을 실험 하였다. 실험데이터는 이 분야의 공인 자료인 LFW Face Database[7] 데이터를 사용하였으며, 실험결과는 제안된 방법이 문제 해결에 적합한 접근임을 보여준다.

데카르트 좌표계 기반 노드 압축을 이용한 효율적인 2차원 연기 합성 (Efficient 2D Smoke Synthesis with Cartesian Coordinates System Based Node Compression)

  • 김동희;김종현
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제64차 하계학술대회논문집 29권2호
    • /
    • pp.659-660
    • /
    • 2021
  • 본 논문에서는 데카르트 좌표계 기반으로 노드를 압축함으로써 SR(Super-resolution) 기반 연기 합성을 효율적으로 처리할 수 있는 방법을 제안한다. 제안하는 방법은 다운 스케일링과 이진화를 통하여 연기 시뮬레이션의 계산 공간을 효율적으로 줄이고, 데카르트 좌표계 축을 기준으로 쿼드트리의 말단 노드를 압축함으로써 네트워크의 입력으로 전달하는 데이터 개수를 줄인다. 학습에 사용된 데이터는 COCO 2017 데이터셋이며, 인공신경망은 VGG19 기반 네트워크를 사용한다. 컨볼루션 계층을 거칠 때 데이터의 손실을 막기 위해 잔차(Residual)방식과 유사하게 이전 계층의 출력 값을 더해주며 학습한다. 결과적으로 제안하는 방법은 이전 결과에 비해 네트워크로 전달해야 하는 데이터가 압축되어 개수가 줄어드는 결과를 얻었으며, 그로 인해 네트워크 단계에서 필요한 I/O 과정을 효율적으로 처리할 수 있게 되었다.

  • PDF

열간압연공정 에너지 사용 모델 기술개발 (Construction of Energy Model on Hot Rolling Process)

  • 홍종희;이진희;신기훈;김성주
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2020년도 제61차 동계학술대회논문집 28권1호
    • /
    • pp.265-267
    • /
    • 2020
  • 본 논문에서는 열간압연 공정에 있어 효율적인 제품 생산 스케줄링에 필수적인 제품단위 에너지 사용 모델링 기법을 제안한다. 제안된 모델은 시스템 자원을 효율적 혹은 최소화하여 사용하여 실시간 처리량을 최대화함으로써 생산 예정 리스트로부터의 예측 작업 수행시간을 최소화할 수 있도록 한다. 제안된 기법은 다변량 선형 모델 방식으로 구성됨으로써 인공 지능 혹은 신경망 학습 방식에 비교하여 그 처리 속도가 빠르다는 장점을 가지고 있다. 본 논문에서는 서두에서 대상 응용처인 철강 산업과 열간 압연 공정 및 에너지 스케줄링에 대하여 간략히 언급한 후 본문에서 모델링을 위한 사전 데이터 수집, 모델링 기법을 자세히 설명하고 결론에서 모델의 정확도 성능을 최신 신경망 기법과 비교하여 검증하였다.

  • PDF

한국어 질의 응답에서의 화제성을 고려한 딥러닝 기반 정답 유형 분류기 (Deep learning-based Answer Type Classifier Considering Topicality in Korean Question Answering)

  • 조승우;최동현;김응균
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.103-108
    • /
    • 2019
  • 한국어 질의 응답의 입력 질문에 대한 예상 정답 유형을 단답형 또는 서술형으로 이진 분류하는 방법에 대해 서술한다. 일반적인 개체명 인식으로 확인할 수 없는 질의 주제어의 화제성을 반영하기 위하여, 검색 엔진 쿼리를 빈도수로 분석한다. 분석된 질의 주제어 정보와 함께, 정답의 범위를 제약할 수 있는 속성 표현과 육하원칙 정보를 입력 자질로 사용한다. 기존 신경망 분류 모델과 비교한 실험에서, 추가 자질을 적용한 모델이 4% 정도 향상된 분류 성능을 보이는 것을 확인할 수 있었다.

  • PDF

모바일 무선환경에서 신경망 자원예측에 의한 적응 호 수락제어 (Adaptive Call Admission Control Based on Resource Prediction by Neural Network in Mobile Wireless Environments)

  • 이진이
    • 한국항행학회논문지
    • /
    • 제13권2호
    • /
    • pp.208-213
    • /
    • 2009
  • 본 연구는 모바일 환경에서 신경망 기법을 이용하여 서비스 호가 요구하는 대역폭의 크기를 예측하고, 목표 핸드오프호 손실확률 이하로 유지시키는 신경망 자원예측에 의한 적응 호 수락제어기법을 제안한다. 이 기법은 목표 핸드오프호의 손실확률을 설정하여 그 기준치 이상으로 핸드오프호의 손실확률이 발생하면 예약 대역폭의 양을 증가시켜부정확한 예측으로 인해 핸드오프호의 손실확률이 증가되는 것을 방지하여 핸드오프호의 GoS(Grade of Service)를 보장하기 위함이다. 제안한 신경망 자원예측과 목표 핸드오프호 손실확률에 기초한 적응 호수락제어기법의 성능을 기존의 호 수락제어기법과 비교하여 핸드오프호 손실확률을 기준치 이하로 유지할 수 있음을 보인다.

  • PDF