• 제목/요약/키워드: 이중 모자형 단면부재

검색결과 9건 처리시간 0.021초

이중 모자형 단면부재의 압괴 연구 (A Study on the Crushing Theory of Double Hatted-section Tube)

  • 김천욱;한병기
    • 한국자동차공학회논문집
    • /
    • 제3권3호
    • /
    • pp.29-36
    • /
    • 1995
  • The present paper deals with the crushing characteristics of double hatted-section tube used in body structure of passenger car. Being crushed, a double hatted-section tube shows symmetric or antisymmetric buckling mode according to section aspect ratio and flange size. Zone of buckling mode is shown by numerical methods. It is supposed that crippling behavior of double hatted-section tube corresponds with rectangular tube without flange. Crippling plate coefficient is also calculated when section aspect ratio of tube is higher than one.

  • PDF

모자형 단면부재의 폭비와 플랜지 용접간격에 따른 압궤특성 (Collapse Characteristics on Width Ratio and Flange Spot-Weld Pitch for Hat-Shaped Members)

  • 차천석;강종엽;김영남;김정호;김선규;양인영
    • 대한기계학회논문집A
    • /
    • 제25권1호
    • /
    • pp.98-105
    • /
    • 2001
  • The fundamental and widely used spot welded sections of automobiles (hat and double hat-shaped section members) absorb most of the energy in a front-end collision. The sections were tested on axial static(10mm/min) and quasi-static(1000mm/min) loads. Based on these test results, specimens with various thickness, shape and spot weld pitch on the flange have been tested with impact velocity(7.19m/sec) the same as a real life car clash. Characteristics of collapse have been reviewed and a structure of optimal energy absorbing capacity is suggested.

모자형 단면 점용접부재의 축방향 압궤특성에 관한 연구(I) (A Study on the Collapse Characteristics of Hat-Shaped Members with Spot Welding under Axial Compression(I))

  • 차천석;김정호;양인영
    • 한국정밀공학회지
    • /
    • 제17권3호
    • /
    • pp.192-199
    • /
    • 2000
  • The spot-welded automotive side member which has a hat-shaped section and a double hat shaped section has been tested on the axial static(10mm/min) and quasi-static(50mm/min) compressing load. The collapse characteristics of automotive sections have been reviews on shift on shape and in width of the spot-voiding on the flange. On the basis of the results of tests and reviews, the optimum energy absorption capacity of the structure has been studied.

  • PDF

FEM에 의한 점용접된 이중모자형 단면부재의 축방향 압궤특성에 관한 연구 (A Study on Axial Collapse Characteristics of Spot Welded Double-Hat Shaped Section Members by FEM)

  • 차천석;김영남;양인영
    • 한국정밀공학회지
    • /
    • 제18권7호
    • /
    • pp.120-126
    • /
    • 2001
  • The widely used spot welded section members of vehicles are structures which absorb most of the energy in a front-end collision. In front-end collision, sufficiently absorbed in the front parts, the impact energy does not reach the passengers. Simultaneously, the frame gets less damaged. This structures have to be very stiff, but collapse progressively to absorb the kinetic energy as expected. In the view of stiffness, the double-hat shaped section member is stiffer than the hat shaped section member. In progress of collapse, the hat shaped section member is collapsing progressively, but the double-hat shaped section member does not due to stiffness. An analysis on the hat shaped section member was previously completed. This paper concerns the collapse characteristic of the double-hat shaped section member. In the program system presented in this study, an explicit finite element code, LS-DYNA3D is adopted for simulating complicate collapse behavior of double hat shaped section members with respect to spot weld pitches. And comparing with the results from the quasi-static and impact experiment, the simulation has been verified.

  • PDF

모자형 단면 점용접부재의 축방향 압궤특성에 관한 연구(II) (A Study on the Collapse Characteristics of Hat-shaped Members with Spot Welding under Axial Compression(II))

  • 차천석;양인영
    • 한국정밀공학회지
    • /
    • 제17권5호
    • /
    • pp.195-201
    • /
    • 2000
  • The fundamental spot welded sections of automobiles (hat-shaped and double hat-shaped sections) absorb most of the energy in a front impact collision. The sections of various thickness, shape and weld width on the flange lave been tested on axial impact crush load (Mass 40kg, Velocity 7.19m/sec) using a vertical air pressure crash est device Characteristics of impact collapse have been reviewed and a structure of optimal energy absorbing capacity is suggested.

  • PDF

모자형 단면부재의 압괴특성 연구 (A Study on Crushing Characteristic of Hatted Section Tube)

  • 김천욱;한병기;김병삼
    • 한국자동차공학회논문집
    • /
    • 제10권2호
    • /
    • pp.212-219
    • /
    • 2002
  • In the frontal collision of cars, front parts of cars such as engine rail and side members that are composed of hatted section tubes should absorb most of the collision energy far the passenger compartment not to be deformed. For these reasons the study on the collapse characteristics, maximum crushing load and energy absorption capacity of hatted section tubes are needed. In this study, top hatted section tubes and double hatted section tubes are investigated. The maximum crushing load of hatted section tubes is induced from plastic buckling stress of plates by considering that the hatted section tubes are composed of plates with each different boundary conditions and that its material has a strain hardening effect. On this concept maximum crushing load equations of hatted section tubes are derived and verified by experiments. from the results of experiment, the differences of collapse characteristics between top hatted section tube and double hatted section tube are analysed. And mean crushing loads of hatted section tubes from experiments are compared with other theory.

이종재료의 결합방법에 따른 모자형 단면부재의 충돌실험 (Crushing Test of the Double Hat-shaped Members of Dissimilar Materials by Seining Methods)

  • 이명한;박영배;김헌영;오수익
    • 한국자동차공학회논문집
    • /
    • 제13권4호
    • /
    • pp.129-134
    • /
    • 2005
  • There is a strong industrial demand for the development of light-weight vehicle to improve fuel efficiency and dynamic performance. The effective method of achieving the weight reduction is to use low-density materials such as aluminum and magnesium. In applying these materials to the vehicle, it is often required to join dissimilar materials such as aluminum and steel. However, conventional joining method, namely resistance spot welding cannot be used in joining dissimilar materials. Self·piercing rivet(SPR) and adhesive bonding is a good alternative to resistance spot welding. In this study, the impact test of double hat-shaped member made by resistance spot welding, SPR and adhesive bonding was performed. As a result, various parameters of crashworthiness were analyzed and evaluated. Also, the applicability of SPR and adhesive bonding as an alternative to resistance spot welding was suggested.

속도변화에 따른 점용접된 모자형단면부재의 에너지흡수 특성 (Energy Absorption Characteristics for Spot Welded Hat-shaped Section Members at Various Velocities)

  • 심재기;차천석;양인영
    • 한국공작기계학회논문집
    • /
    • 제15권6호
    • /
    • pp.114-120
    • /
    • 2006
  • Front-end side members of vehicles are structures with the greatest energy absorbing capability in a front-end collision of vehicles. This paper was undertaken to analyze the energy absorption characteristics of spot welded hat and double hat-shaped section members under the axial collapse. The experiments were performed with respect to the various collapse velocities. It was expected that para-closed sections would show collapse characteristics which be quite different from those of perfectly closed sections. The collapse velocities were selected as follows: the velocities in the hat-shaped section members were 0.00017m/sec, 0.017m/sec, 4.7m/sec, 6.5m/sec, 6.8m/sec, 7.2m/sec, and 7.3m/sec those in the double hat-shaped section members were 0.00017m/sec, 0.017m/sec, 6.5m/sec, 6.8m/sec, 7.2m/sec 7.3m/sec, and 7.9m/sec. In the program system presented in this study, an explicit finite element code, LS-DYNA3D, is adopted for simulating complicated collapse behavior of the hat and double hat-shaped section members under the same condition of the collapse test. The validity of simulation was confirmed by the comparison between the simulation result and the collapse experiment.

최적 충격특성에 갖는 차체구조용 점용접 박육단면부재의 개발 -충격속도변화에 따른 압궤특성을 중심으로- (Development of Vehicle Members with Spot Welded Thin-wall Section for Optimum Impart Characteristic -Based on Collapse Characteristics on the Varied Impact Velocities-)

  • 양인영;차천석;강종엽
    • 대한기계학회논문집A
    • /
    • 제25권7호
    • /
    • pp.1131-1138
    • /
    • 2001
  • This paper concerns the crashworthiness of the widely used vehicle structure, the spot welded hat and double hat shaped section members, which are excellent on the point of the energy absorbing capacity and low production cost. The target of this paper is to analyze the energy absorption capacity of the structure against the front-end collision, and to obtain useful information for designing stage. Changing the spot weld pitches on the flanges, the hat and double hat shaped section members were tested on the axial collapse loads in impact velocities of 4.72m/sec, 6.54m/sec, 7.19m/sec and 7.27m/sec. To efficiently review the collapse characteristics of these sections, the simulation have been carried out using explicit FEM package, LS-DYNA3D. The solutions are compared with results from the impact collapse experiments.