• Title/Summary/Keyword: 이중 나노 구조

Search Result 87, Processing Time 0.027 seconds

Microstructure of Nanocrystalline Electrolytic $MnO_2$ (EMD) (Nanocrystalline Electrolytic $MnO_2$ (EMD)의 미세구조 연구)

  • ;Anqiang He;Arthur H. Heuer
    • Korean Journal of Crystallography
    • /
    • v.14 no.2
    • /
    • pp.79-83
    • /
    • 2003
  • The microstructure of bulk electrolytic MnO₂ (EMD) was studied using x-ray diffraction and transmission electron microscopy (TEM). The bulk sample showed a typical powder x-ray diffraction pattern of EMD materials. TEM study showed that the structure of EMD is present at two length scales;grains, ∼0.2 ㎛ in diameter, and ∼10 nm crystallites within the grain. The electron beam microdiffraction study revealed that each grain is an assemblage of multiphase with a common crystallographic orientation, and_that ∼50% of the crystallites are Ramsdellite, ∼30% are ε-MnO₂, and ∼15% are Pyrolusite. The {1120}peak located at about 67° in powder XRD pattern as well as a high-resolution electron microscope (HREM) image of (0001) plane support the existence of ε-MnO₂ phase.

Analysis of Drain Induced Barrier Lowering for Double Gate MOSFET Using Gaussian Distribution (가우스분포를 이용한 이중게이트 MOSFET의 드레인유기장벽감소 분석)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.2
    • /
    • pp.325-330
    • /
    • 2012
  • In this paper, drain induced barrier lowering(DIBL) has been analyzed as one of short channel effects occurred in double gate(DG) MOSFET to be next-generation devices. Since Gaussian function been used as carrier distribution for solving Poisson's equation to obtain analytical solution of potential distribution, we expect our results using this model agree with experimental results. DIBL has been investigated according to projected range and standard projected deviation as variables of Gaussian function, and channel structure and channel doping intensity as device parameter. Since the validity of this analytical potential distribution model derived from Poisson's equation has already been proved in previous papers, DIBL has been analyzed using this model. Resultly, DIBL has been greatly changed for channel structure and doping concentration.

Doping Profile Dependent Subthreshold Swing for Double Gate MOSFET (DGMOSFET에서 문턱전압이하 스윙의 도핑분포 의존성)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.8
    • /
    • pp.1764-1770
    • /
    • 2011
  • In this paper, the subthreshold swings for doping distribution in the channel have been analyzed in double gate MOSFET(DGMOSFET). The DGMOSFET is extensively been studying since it can lessen the short channel effects(SCEs) as next -generation nano device. The degradation of subthreshold swing(SS) known as SCEs has greatly influenced on application of digital devices, and has been analyzed for structural parameter and variation of channel doping profile in DGMOSFET. The analytical model of Poisson equation has been derived from nonuniform doping distribution for DGMOSFET. To verify potential and subthreshold swing model based on this analytical Poisson's equation, the results have been compared with those of the numerical Poisson's equation, and subthreshold swing for DGMOSFET has been analyzed using these models.

Preparation of Dual-functionalized Polymeric Membrane Electrolyte and Ni, Co-based Nanowire/MOF Array on Carbon Cloth for High-performance Supercapacitor (이중 기능 고분자 전해질 막의 제조 및 탄소 섬유에 니켈, 코발트 기반의 나노와이어/MOF 배열을 통한 고성능 슈퍼커패시터 연구)

  • Hye Jeong Son;Bong Seok Kim;Ji Min Kwon;Yu Bin Kang;Chang Soo Lee
    • Membrane Journal
    • /
    • v.33 no.4
    • /
    • pp.211-221
    • /
    • 2023
  • This study presents a comprehensive study on the synthesis and characterization of PVI-PGMA/LiTFSI polymeric membrane electrolytes and CxNy-C flexible electrodes for energy storage applications. The dual-functional PVI-PGMA copolymer exhibited excellent ionic conductivity, with the PVI-PGMA73/LiTFSI200 membrane electrolyte achieving the highest conductivity of 1.0 × 10-3 S cm-1. The electrochemical performance of the CxNy-C electrodes was systematically investigated, with C3N2-C demonstrating superior performance, achieving the highest specific capacitance of 958 F g-1 and lowest charge transfer resistance (Rct) due to its highly interconnected hybrid structure comprising nanowires and polyhedrons, along with binary Co/Ni oxides, which provided abundant redox-active sites and facilitated ion diffusion. The presence of a graphitic carbon shell further contributed to the enhanced electrochemical stability during charge-discharge cycles. These results highlight the potential of PVI-PGMA/LiTFSI polymeric membrane electrolytes and CxNy-C electrodes for advanced energy storage devices, such as supercapacitors and lithium-ion batteries, paving the way for further advancements in sustainable and high-performance energy storage technologies.

Breakdown Voltages Deviation for Channel Dimension of Double Gate MOSFET (이중게이트 MOSFET의 채널구조에 따른 항복전압 변화)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.3
    • /
    • pp.672-677
    • /
    • 2013
  • This paper have analyzed the change of breakdown voltage for channel dimension of double gate(DG) MOSFET. The breakdown voltage to have the small value among the short channel effects of DGMOSFET to be next-generation devices have to be precisely analyzed. The analytical solution of Poisson's equation have been used to analyze the breakdown voltage, and Gaussian function been used as carrier distribution to analyze closely for experimental results. The breakdown voltages have been analyzed for device parameters such as channel thickness and doping concentration, and projected range and standard projected deviation of Gaussian function. Since this potential model has been verified in the previous papers, we have used this model to analyze the breakdown voltage. As a result, we know the breakdown voltage is influenced on Gaussian function and device parameters for DGMOSFET.

Adsorption of Arsenate on the Synthesized Layered Double Hydroxide Materials (층상이중 수산화물을 이용한 5가 비소 흡착 특성)

  • Choi, Young-Mu;Choi, Won-Ho;Kim, Jung-Hwan;Park, Joo-Yang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1B
    • /
    • pp.91-96
    • /
    • 2009
  • Layered double hydroxide is synthesized and used in the arsenate adsorption experiments. The shapes of two materials analyzed by TEM showed that unheated material is amorphous in shape, micro-sized while heat treated material showed more crystallized in shape and nano-sized. X-ray diffraction showed this result more obvious. $N_2$ adsorption-desorption results showed that the materials are mesoporous and the specific surface area of the heated material is more than two times larger than the unheated material. Adsorption of As(V) is expected to be more in the heated material than the unheated material. Kinetic test of arsenate adsorption showed very fast reaction. The reactivity of Fe with As(V) might be the main factor for this result. The reaction kinetic of the heated and the unheated materials were similar and even the adsorption isotherms showed similar results for both materials. Both materials are found to be useful in remediation of soil and groundwater polluted by waste mine tailings consist of high concentration of As(V).

A Two-Axis Ultra-precision Stage Using Flexure-type Parallel Linear Guide Mechanism (플렉셔 구조의 병렬형 선형 안내기구를 이용한 2 축 초정밀 스테이지)

  • Choi Kee-Bong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.1 s.178
    • /
    • pp.129-135
    • /
    • 2006
  • In this study, a two-axis ultra-precision stage driven by piezoelectric elements is presented. The stage has a flexure-type parallel linear guide mechanism consisting of quad-symmetric simple parallel linear springs and quad-symmetric double compound linear springs. While the simple parallel linear springs guide the linear motion of a moving plate in the stage, the double compound linear springs follow the motion of the simple parallel linear spring as well as compensate the parasitic motions caused by the simple parallel linear springs. The linear springs are designed by rectangular beam type flexures that are deformed by bending deflection rather than axial extension, because the axial extension is smaller than the bending deflection at the same force. The designed guide mechanism is analyzed by finite element method(FEM). Then two-axis parallel linear stage is implemented by the linear guide mechanism combined with piezoelectric elements and capacitance type displacement sensors. It is shown that the manufactured ultra-precision stage achieves 3 nm of resolution in x- and y-axis within 30 ${\mu}m$ of operating range.

Investigation of Junctionless Transistors for High Reliability

  • Jeong, Seung-Min;O, Jin-Yong;Islam, M. Saif;Jo, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.142-142
    • /
    • 2012
  • 최근 반도체 산업의 발전과 동시에 소자의 집적화에 따른 단채널 효과가 문제되고 있다. 채널 영역에 대한 게이트 영역의 제어능력이 떨어지면서 누설전류의 증가, 문턱전압의 변화가 발생하며, 이를 개선하기 위해 이중게이트 혹은 다중게이트 구조의 트랜지스터가 제안되었다. 하지만 채널길이가 수십나노미터 영역으로 줄어듦에 따라 소스/드레인과 채널간의 접합형성이 어렵고, 고온에서 열처리 과정을 거칠 경우 채널의 유효길이를 제어하기 힘들어진다. 최근에 제안된 Junctionless 트랜지스터의 경우, 소스/드레인과 채널간의 접합이 없기 때문에 접합형성 시 발생하는 공정상의 문제뿐만 아니라 누설전류영역을 개선하며, 기존의 CMOS 공정과 호환되는 이점이 있다. 한편, 집적화되는 반도체 기술에 따라, 동작 시 발생하는 스트레스가 소자의 신뢰성에 중요한 요인으로 작용하게 되며, 현재 Junctionless 트랜지스터의 신뢰성 특성에 관한 연구가 부족한 상황이다. 따라서, 본 연구에서는 Junctionless 트랜지스터의 NBTI 특성과 hot carrier effect에 의한 신뢰성 특성을 분석하였다. Junctionless 트랜지스터의 경우, 축적모드로 동작하기 때문에 스트레스에 의해 유기되는 캐리어의 에너지가 낮다. 그 결과, 반전모드로 동작하는 Junction type의 트랜지스터에 비해 스트레스에 의한 subthreshold swing 기울기의 열화와 문턱전압의 이동이 감소하였다. 또한 소스/드레인과 채널간의 접합이 없기 때문에 hot carrier effect에 의한 게이트 절연막 및 계면에서의 열화가 개선되었다.

  • PDF

Preparation and Characterization of Chitosan-coated PLGA Nanoparticle (키토산이 코팅된 PLGA 나노입자의 제조 및 특성)

  • Yu, Su-Gyeong;Nah, Jae-Woon;Jeong, Gyeong-Won
    • Applied Chemistry for Engineering
    • /
    • v.32 no.5
    • /
    • pp.509-515
    • /
    • 2021
  • In this study, poly lactic-co-glycolic acid (PLGA) nanoparticles (PNP) were prepared through double (w/o/w) emlusion and emulsifying solvent-evaporation technique using PLGA, which has biocompatibility and biodegradability. To maximize stability and bioavailability of the particles, chitosan-coated PLGA nanoparticles (CPNP) were prepared by charge interaction between PNP and chitosan. We demonstrated that CPNP can be utilized as a drug carrier of oral administration. The chemical structure of CPNP was analyzed by 1H-NMR and FT-IR, and all characteristic peaks appeared, confirming that it was successfully prepared. In addition, particle size and zeta potential of CPNP were analyzed using dynamic light scattering (DLS) while morphological images were obtained using transmission electron microscope (TEM). Thermal decomposition behavior of CPNP was observed through thermogravimetric analysis (TGA). In addition, the cytotoxicity of CPNP was confirmed by MTT assay at HEK293 and L929 cell lines, and it was proved that there is no toxicity confirmed by the cell viability of above 70% at all concentrations. These results suggest that the CPNP developed in this study may be used as an oral drug delivery carrier.

Fabrication of Double-layered ZnO Nanostructures by an Aqueous Solution Growth (수용액 합성법에 의한 ZnO 이중 나노구조물의 합성)

  • Chae, Ki-Woong;Kim, Jeong-Seog;Cao, Guozhong
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.6
    • /
    • pp.596-601
    • /
    • 2009
  • Double-layered ZnO nanostructures have been synthesized by aqueous solution method on (001) plane of ZnO nanorod. A stepwise changing of aqueous solution concentration gave rise to a new nano-structured layer consisting of either multiple of nanorods or nanowires with much smaller radii than that of the ZnO nanorod on which the new layer was grown. As the first step the ZnO nanorods have been grown to have the (001) preferential orientation in the aqueous solution consisting of 0.1M zinc nitrate and 0.1 M HMT. This preferentially aligned ZnO nanorods have been regrown in either a less diluted solution of 0.01M zinc nitrate and 0.01 M HMT or a more diluted solution of 0.005M zinc nitrate and 0.01 M HMT. A new nano-layer consisting of numerous aligned nanorods or nanowires has been produced on the (001) planes of ZnO nanorods. The growth mechanism for this double layered ZnO nanostructure is ascribed to the (001) polar surface energy instability and inhibition of (001) plane growth due to the step-wise change of aqueous solution concentration; ZnO nuclei formed on the (001) plane grow preferentially in (010) plane instead of (001) plane to reduce the total surface energy. Surface area of ZnO nanostructure can be increased in orders of magnitudes by forming a new layer consisting of smaller nanorods/nanowires on (001) plane of ZnO nanorods.