• Title/Summary/Keyword: 이중창호

Search Result 66, Processing Time 0.02 seconds

The Development of Single Phase Dual Function Power Compensator(DFPC) with Source Condition (전원상태에 따른 단상 이중기능 전력보상기의 개발)

  • Park, Ga-Woo;Kim, Mal-Soo;Choi, Chang-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.222-226
    • /
    • 2001
  • 본 논문에서는 단상 H-bridge 구조의 VSC (Voltage Source Converter)를 이용하여 계통전원을 사용하는 부하의 고조파 전류 보상기능과 전원 Back-up 기능을 갖는 부하전력보상기를 보여준다. 이 두 제어 기능은 전원전압의 유무에 따라 APF의 컨버터 동작과 UPS의 인버터로 동작하게 함으로써 기존 UPS에 부하 전류의 고조파 보상이라는 부가적인 이득을 갖는 이중전력보상기(Dual Function Power Compensator)라 할 수 있다. 컨버터 제어는 Battery 충전 동작과 APF 동작을 동시에 수행하며, 인버터 제어는 정전시 부하에 전원을 공급하는 UPS로서의 동작을 수행하게 된다. 두가지 동작이 성공적으로 수행되기 위해서는 1. 전원전압의 신속한 검출과 판단, 2. 컨버터의 Battery 충전, 3. APF동작을 위한 부하전류의 고조파 전류계산, 4. 전원전압의 동기추종 등이 각각의 동작모드별로 순조롭게 연계동작 되어 야 한다. 본 논문에서는 DFPC의 발생배경과 제안된 DFPC 제어모드의 구분을 결정하는 전원전압의 검출방법에 대하여 소개한다. 그리고 제안된 DFPC의 실제 시스템을 제작하여 각각의 동작상황과 성능을 시험하여 그 결과를 보여준다.

  • PDF

Indoor Airflow of High-Rise Apartment with Different Types of Box-Windows (초고층 공동주택의 이중외피 창호 유형별 실내기류 특성 비교)

  • Choi, Tae-Hwoan;Jeon, Mi-Sook;Lee, Jung-Hyun;Kim, Tae-Yeon;Leigh, Seung-Bok
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.993-998
    • /
    • 2006
  • High-rise apartments have a problem using natural ventilation because of the strong outdoor wind velocity. Conventional high-rise apartments have adopted mechanical ventilation systems to maintain the indoor air quality. However, it leads to the overuse of electricity and the sick house syndrome. Double-skin facade is the alternative for the high-rise building to use natural ventilation and this study is focused on the performance of the box-window, which is a kind of double-skin facades. Indoor wind velocity and HCHO concentrations are analyzed with three types of box-windows: the diagonal type, parallel type and perpendicular type. The airflow is simulated by computational fluid dynamics program. Box-windows reduce the maximum value of indoor wind velocity about 50% compared with the single window and the HCHO concentrations do not have the big difference. Box-windows could be the alternative to enhance the use of the natural ventilation and indoor air quality of the high-rise apartment.

  • PDF

Daylighting Performance of a New-Developed Energy Efficient Double-Skin Window System (에너지절약형 이중외피 창호의 기본채광 성능)

  • Park, Jong-Myung;Kim, Jae-Hoon;Choi, Jin-Woo;Lim, Hong-Soo;Kim, Gon
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.117-122
    • /
    • 2008
  • The apartment will be much more convenient than the other one in the application of green technologies, providing the merits by mass production. For example, pre-manufactured building materials can be effectively adapted to the formation of buildings. Recently, the form of double-enveloped window system has been developed for the purposed of minimizing energy loss occurred around windows. On the other hand, the expansion of balcony area was legalized and thus, a visual buffer area does not exist any more. All-glass window wall on apartment houses without a balcony produces pretty harmful area with direct sunbeam. A various types of glass can be applied to the window system and it plays a critical role in the determination of inner visual environment. For the purpose of verifying the potential of its daylighting, a mock-up model has been constructed and tested. The refurbished version of conventional window shows its illuminated characteristics. Clear and Low-e glass have been adapted for window area and daylighting ratio has been compared in both test cells.

  • PDF

Scale Model Experiment on Daylighting of Differentiated Glazing System (축소모형을 이용한 분할형 유리 투과체 창호시스템의 채광성능실험)

  • Jeong, In Young;Kim, Jeong Tai
    • KIEAE Journal
    • /
    • v.4 no.4
    • /
    • pp.61-68
    • /
    • 2004
  • Daylight is a critical factor in architecture, as it helps enhance the working efficiency and pleasantness of the people working inside, in addition to reduce the power consumption in heating and cooling and make the interior space brighter. There are many kinds of glazing and daylighting systems. At present, research and efforts for their development are carried out, alongside quantitative evaluation. This study aims to present basic materials to be used to design proper glazing and daylighting systems in architecture based on a quantitative evaluation by scale models of existing office buildings. The result of the study can be summarized as follows. 1)As a result of the experiment, it appeared that the ratio of the interior illumination (i.e. at the working table, ceiling and wall) against the outdoor illumination increases at a constant rate, as the transmittance of the glazing goes up. 2) It was found that the SIR(Sunlight Illuminance Ratio) of a separated window system goes up by 20-50% at the rear part than in the case of an ordinary window system.

Unsteady cascade flow calculations of using dual time stepping and the k-$\omega$ turbulence model (이중시간전진법과 k-$\omega$ 난류모델을 이용한 익렬 내부 비정상 유동해석)

  • Choe, Chang-Ho;Yu, Jeong-Yeol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.12
    • /
    • pp.1624-1634
    • /
    • 1997
  • A numerical study on two-dimensional unsteady transonic cascade flow has been performed by adopting dual time stepping and the k-.omega. turbulence model. An explicit 4 stage Runge-Kutta scheme for the compressible Navier-Stokes equations and an implicit Gauss-Seidel iteration scheme for the k-.omega. turbulence model are proposed for fictitious time stepping. This mixed time stepping scheme ensures the stability of numerical computation and exhibits a good convergence property with less computation time. Typical steady-state convergence accelerating schemes such as local time stepping, residual smoothing and multigrid combined with dual time stepping shows good convergence properties. Numerical results are presented for unsteady laminar flow past a cylinder and turbulent shock buffeting problem for bicircular arc cascade flow is discussed.

Performance Analysis of Summertime Heat Transfer Characteristics of the Double Skin Window for Plant Factory (식물공장 이중창호의 하절기 열전달 성능 분석)

  • So, Jae-Hyun;Kim, Woo-Tae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.4
    • /
    • pp.351-357
    • /
    • 2012
  • To reduce the summertime cooling load of a plant factory, a concept design was performed for the double skin window which utilizes the low temperature air from a ground coupled heat exchanger. The design parameters were selected as the number of cavity air inlet, the cavity thickness, the location of cavity air inlet, and the configuration of cavity air outlet. A parametric study was conducted in a systematic way to evaluate the heat transfer characteristics of the double skin window. As the number of cavity air inlet and the cavity thickness increase, the heat flux from outside air to indoor air was decreased. The effect of the location of cavity air inlet was not significant and the larger cavity air outlet area gave us relatively better heat blocking performance from outside hot air. This study demonstrated that it is possible to develop an improved double skin window by utilizing a ground coupled heat exchanger.

The Characteristics of the winter season window and indoor temperature due to the indoor plant (동계 이중외피와 내부식재에 의한 실내 온도 특성에 관한 연구)

  • Yun, Young-Il;Cho, Ju-Young
    • KIEAE Journal
    • /
    • v.15 no.5
    • /
    • pp.107-112
    • /
    • 2015
  • Purpose: This study desires to investigate an effect of indoor temperature, humidity, and illuminance targeting a planting system of double-skin facade and cavity space adjacent to the outside within a certain period of winter. Through this, the study suggests a basic material about an energy conservation effect of double window system using planting to reduce heating load of a building in winter, so desires to contribute to indoor thermal comfort effect and illuminance correction study of double window and indoor plant. Method: Considering effects such as day and night climatic elements and air conditions in winter, illuminance measurement was conducted through a double-skin facade of space, a subject of the measurement, on the basis of practical residence time of a resident, and this study analyzed characteristics of indoor illuminance about this. The study measured and compared a change of insolation, dry-bulb temperature, and relative humidity at each indoor-outdoor measuring point, so measured and compared characteristics of an indoor temperature effect by elements of double-skin facade and indoor plant. Result: Through this study, the researcher could determine that indoor plant within double window in winter not only blocks solar radiation but also photosynthesizes, so is somewhat disadvantageous to winter thermal comfort reducing heating load. In addition, solar radiation going through interior plays a role to bring down somewhat high humidity to about 50% of reasonable humidity, so plays a direct role of maintenance of comfortable indoor space. Although there are effects such as blocking of solar radiation and temperature reduction, this has a positive influence on humidity control and proper illuminance distribution. The researcher could determine that illuminance, temperature, and humidity by solar radiation penetration for the whole measuring time play a role to supplement indoor environment mutually.

월성 2,3,4호기 비상급수계통 성능평가에 관한 연구

  • 오광석;김창호;이중섭;김선철;오종필
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.362-367
    • /
    • 1996
  • CANDU-6형 원자력발전소인 월성 2,3,4호기 비상급수계통의 성능을 평가하기 위하여 설계기능 수행과 관련된 변수로서 격납건물내 집수조(sump) 온도와 열수송계통으로 주입되는 냉각재온도를 사용한 분석을 수행하였다. 이 온도들은 NTU(Number of Transfer Unit)방법을 이용한 비상노심 냉각계통 열교환기의 열전달속도와 열전달계수의 해석을 열평형관계식과 함께 조합한 프로그램을 사용하여 계산하였다. 또한 증기발생기 급수량과 추후 수조에 공급되는 보충수에 대한 설계요건을 검토하였다. 이러한 변수와 설계요건은 비상급수계통이 발전소 정상 열제거기능 상실후 노심의 붕괴열제거에 유효한 열침원으로서의 기능을 수행함을 보여 주었다. 또 격납건물의 건전성 유지와 관련된 집수조내 최고온도가 허용치 이하로 유지되었다.

  • PDF

Theory vs. Experiment of Static Characteristics of Contrarotating Hydrostatic Journal Bearing with Overhung-Type Loads (외팔형 하중지지 이중 반전 정압 베어링의 정특성 이론 및 실험 연구)

  • 이용복;김창호;권오관;최동훈;이강복
    • Tribology and Lubricants
    • /
    • v.12 no.3
    • /
    • pp.92-99
    • /
    • 1996
  • Energy-efficient contrarotating propeller systems have been recently reviewed as one of alternative means in marine car-carrier applications. Contrarotating rotors preclude the usage of conventional plain journal bearings due to the lack of load carrying capacity. A new multi-recess hydrostatic contrarotating journal beating test facility has been designed and installed to test the static load carrying capacity. Measurements of flow rates and orbits have been investigated by testings on a overhung-type contrarotating rotor system which is supported by a hydrostatic journal bearing. Numerical results of static equilibria were compared with test results. Various contrarotating speed combinations, and supply pressure conditions were selected. The numerical predictions of orbit centers and flow rates are generally accurate.

Calculation of Rotor-Stator Interactions Using a Low Reynolds Number Turbulence Model (저레이놀즈수 난류모델을 사용한 정익-동익 상호작용 해석)

  • Choi, Chang Ho;Yoo, Jung Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.10
    • /
    • pp.1229-1239
    • /
    • 1999
  • A computational study on unsteady compressible flows has been performed by adopting a low Reynolds number $k-{\omega}$ turbulence model in conjunction with dual time stepping scheme. An explicit four-stage Runge-Kutta scheme for the Navier-Stokes equations and an approximate factorization scheme for the $k-{\omega}$ turbulence model equations are used. Computational results obtained for blade surface pressure distributions in the process of rotor-stator interaction in a turbine stage are in good agreement with extant experimental data. The effects of the wake from the stator on the boundary-layer transition over the rotor blade surface are discussed by showing that high intensity turbulence of the stator wake induces an early transition.