• 제목/요약/키워드: 이중적 로버스트

검색결과 4건 처리시간 0.015초

보조 정보에 의한 이중적 로버스트 대체법 (Doubly Robust Imputation Using Auxiliary Information)

  • 박현아;전종우;나성룡
    • Communications for Statistical Applications and Methods
    • /
    • 제18권1호
    • /
    • pp.47-55
    • /
    • 2011
  • 비대체와 회귀대체는 조사변수의 모형과 조사변수와 보조변수의 관계에 의존하며 모형이 성립되지 않는 경우 이들 대체법을 이용한 추정량의 불편성은 보장되지 않는다. 본 연구에서는 모형이 성립되지 않는 경우에도 추정량의 근사적 불편성이 성립되는 로버스트 대체법을 개발한다. 대체법 개발시 보조변수의 모수 정보를 이용하여 추정량의 효율 증대를 가져오게 한다. 모의실험을 실시하여 본 연구에 대한 이론적 결과의 타당성을 보인다.

비대칭 라플라스 분포를 이용한 분위수 회귀 (Quantile regression using asymmetric Laplace distribution)

  • 박혜정
    • Journal of the Korean Data and Information Science Society
    • /
    • 제20권6호
    • /
    • pp.1093-1101
    • /
    • 2009
  • 분위수 회귀모형은 확률변수들 사이에 확률적인 관계구조를 포함한 함수 모형을 좀 더 완벽하게 추정하도록 제공한다. 본 논문에서는 함수 추정에 로버스트하다고 알려져 있는 서포트벡터기계 기법과 이중벌칙커널기계를 이용하여 분위수 회귀모형을 추정하고자 한다. 이중벌칙커널기계는 고차원의 입력변수에 대한 분위수 회귀가 요구될 때 분위수 회귀모형을 잘 추정한다고 알려져 있다. 또한 본 논문에서는 광범위한 형태의 분위수 회귀모형 추정을 위해서 정규분포보다 비대칭 라플라스 분포를 이용한다. 본 논문에서 제안한 모형은 분위수 회귀모형 추정을 위해서 서포트벡터기계 기법에 이중벌칙커널기계를 이용하여 각각의 평균과 분산을 동시에 추정한다. 평균과 분산함수 추정을 위해 사용된 커널함수의 모수들은 최적의 값을 찾기 위해 일반화근사 교차타당성을 이용한다.

  • PDF

붓스트랩을 활용한 최적 절사공간중위수 추정량 (A Trimmed Spatial Median Estimator Using Bootstrap Method)

  • 이동희;정병철
    • 응용통계연구
    • /
    • 제23권2호
    • /
    • pp.375-382
    • /
    • 2010
  • 본 논문에서는 다변량 자료의 위치모수에 대한 로버스트 추정량으로 공간중위수에 대한 절사 추정량을 제안하였다. 최적절사율은 붓스트랩 방법을 이용하여 결정하였으며, 이중붓스트랩을 활용하여 추정된 절사공간중위수의 공분산행렬을 추정하였다. 모의실험 결과 붓스트랩 방법에 의한 절사공간중위수는 자료가 다변량 코시분포를 따르는 경우 기존 공간중위수에 비하여 작은 평균제곱오차를 보여 효율적인 추정량으로 나타났다. 아울러 이중붓스트랩을 이용한 절사추정량의 공분산행렬 추정량은 단순붓스트랩 방법에 의하여 추정된 공분산행렬이 갖는 과소추정의 문제를 해결하는 방법으로 나타났다.

붓스트랩 방법을 적용한 확률계수 자기회귀 모형에 대한 로버스트 구간추정 (Robust confidence interval for random coefficient autoregressive model with bootstrap method)

  • 조나래;임도상;이성덕
    • 응용통계연구
    • /
    • 제32권1호
    • /
    • pp.99-109
    • /
    • 2019
  • 비선형 시계열인 확률계수 자기회귀(random coefficient autoregressive; RCA) 모형에 대하여 여러 가지 방법을 이용한 추정량의 신뢰구간 비교하였다. RCA 모형에 대하여 자료의 분포를 가정하지 않아도 되는 Quasi 스코어 추정량과 Huber, Tukey, Andrew, Hempal 4가지 유계함수를 이용한 M-Quasi 스코어 추정량을 제시하였다. 이러한 추정량에 대하여 표준 붓스트랩 방법, 백분위수 붓스트랩 방법, 스튜던트화 붓스트랩 방법, 하이브리드 붓스트랩 방법을 이용한 신뢰구간을 구하였다. 모의실험을 통하여 RCA 모형의 오차항의 분포가 정규분포, 오염정규분포, 이중지수분포를 따를 때 Quasi 스코어 추정량과 M-Quasi 스코어 추정량들의 근사적 신뢰구간과 네가지 붓스트랩 방법을 이용한 신뢰구간을 비교하였다.