• Title/Summary/Keyword: 이중적 로버스트

Search Result 4, Processing Time 0.016 seconds

Doubly Robust Imputation Using Auxiliary Information (보조 정보에 의한 이중적 로버스트 대체법)

  • Park, Hyeon-Ah;Jeon, Jong-Woo;Na, Seong-Ryong
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.1
    • /
    • pp.47-55
    • /
    • 2011
  • Ratio and regression imputations depend on the model of a survey variable and the relation between the survey variable and auxiliary variables. If the model is not true, the unbiasedness of the estimator using the ratio or regression imputation cannot be guaranteed. In this paper, we develop the doubly robust imputation, which satisfies the approximate unbiasedness of the estimator, whether the model assumption is valid or not. The proposed imputation increases the efficiency of estimation by using the population information of the auxiliary variables. The simulation study establishes the theoretical results of this paper.

Quantile regression using asymmetric Laplace distribution (비대칭 라플라스 분포를 이용한 분위수 회귀)

  • Park, Hye-Jung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.6
    • /
    • pp.1093-1101
    • /
    • 2009
  • Quantile regression has become a more widely used technique to describe the distribution of a response variable given a set of explanatory variables. This paper proposes a novel modelfor quantile regression using doubly penalized kernel machine with support vector machine iteratively reweighted least squares (SVM-IRWLS). To make inference about the shape of a population distribution, the widely popularregression, would be inadequate, if the distribution is not approximately Gaussian. We present a likelihood-based approach to the estimation of the regression quantiles that uses the asymmetric Laplace density.

  • PDF

A Trimmed Spatial Median Estimator Using Bootstrap Method (붓스트랩을 활용한 최적 절사공간중위수 추정량)

  • Lee, Dong-Hee;Jung, Byoung-Cheol
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.2
    • /
    • pp.375-382
    • /
    • 2010
  • In this study, we propose a robust estimator of the multivariate location parameter by means of the spatial median based on data trimming which extending trimmed mean in the univariate setup. The trimming quantity of this estimator is determined by the bootstrap method, and its covariance matrix is estimated by using the double bootstrap method. This extends the work of Jhun et al. (1993) to the multivariate case. Monte Carlo study shows that the proposed trimmed spatial median estimator yields better efficiency than a spatial median, while its covariance matrix based on double bootstrap overcomes the under-estimating problem occurred on single bootstrap method.

Robust confidence interval for random coefficient autoregressive model with bootstrap method (붓스트랩 방법을 적용한 확률계수 자기회귀 모형에 대한 로버스트 구간추정)

  • Jo, Na Rae;Lim, Do Sang;Lee, Sung Duck
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.1
    • /
    • pp.99-109
    • /
    • 2019
  • We compared the confidence intervals of estimators using various bootstrap methods for a Random Coefficient Autoregressive(RCA) model. We consider a Quasi score estimator and M-Quasi score estimator using Huber, Tukey, Andrew and Hempel functions as bounded functions, that do not have required assumption of distribution. A standard bootstrap method, percentile bootstrap method, studentized bootstrap method and hybrid bootstrap method were proposed for the estimations, respectively. In a simulation study, we compared the asymptotic confidence intervals of the Quasi score and M-Quasi score estimator with the bootstrap confidence intervals using the four bootstrap methods when the underlying distribution of the error term of the RCA model follows the normal distribution, the contaminated normal distribution and the double exponential distribution, respectively.