• 제목/요약/키워드: 이중이진 터보부호

Search Result 11, Processing Time 0.028 seconds

Double Binary Turbo hybrid ARQ Scheme (이중이진 터보 hybrid ARQ 기법)

  • Kwon Woo-Suk;Lee Jeong-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.4C
    • /
    • pp.426-433
    • /
    • 2006
  • In this paper, we propose an incremental redundancy(IR)-hybrid ARQ(HARQ) scheme which uses double binary turbo codes for error correction. We also propose a methodology for basic analysis of the throughput which is a performance index of HARQ. The proposed double binary turbo IR-HARQ scheme provides higher throughput than binary IR-HARQ, which uses binary turbo codes for error correction, at all $E_s/N_0$. An extra coding gain is also attained by using the proposed HARQ scheme over the coding gain achieved by turbo codes only.

Optimum Interleaver Design and Performance Analysis of Double-Binary Turbo Code for Wireless Metropolitan Area Networks (WMAN 시스템의 이중 이진 구조 터보부호 인터리버 최적화 설계 및 성능 분석)

  • Park, Sung-Joon
    • Journal of the Korea Society for Simulation
    • /
    • v.17 no.1
    • /
    • pp.17-22
    • /
    • 2008
  • Double-binary turbo code has been adopted as an error control code of various future communication systems including wireless metropolitan area networks(WMAN) due to its powerful error correction capability. One of the components affecting the performance of turbo code is internal interleaver. In 802.16 d/e system, an almost regular permutation(ARP) interleaver has been included as a part of specification, however it seems that the interleaver is not optimized in terms of decoding performance. In this paper, we propose three optimization methods for the interleaver based on spatial distance, spread and minimum distance between original and interleaved sequence. We find optimized interleaving parameters for each optimization method and evaluate the performances of the proposed methods by computer simulation under additive white Gaussian noise(AWGN) channel. Optimized parameters can provide up to 1.0 dB power gain over the conventional method and furthermore the obtainable gain does not require any additional hardware complexity.

  • PDF

Performance of Double Binary Turbo Code for Ultra Wide-Band Systems with Multiple-Antenna Scheme (다중 안테나 개념을 적용한 초광대역 무선통신 시스템에서 이중 이진 터보 부호 성능)

  • Kim, Eun-Cheol;Cha, Jae-Sang;Lee, Chong-Hoon;Kang, Jeong-Jin;Kim, Seong-Kweon;Hwang, Sung-Ho;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.2
    • /
    • pp.117-122
    • /
    • 2009
  • In this paper, the performance of double binary turbo code is analyzed and simulated in ultra wide-band (UWB) systems employing multiple-antenna scheme. We consider both pulse position modulation-time hopping (PPM-TH) and pulse amplitude modulation-direct sequence (PAM-DS) UWB systems. The space time block code (STBC) scheme is adopted as a transmit diversity method. Also, receive diversity scheme is applied. And double binary turbo code is applied to the UWB system.

  • PDF

Performance of Tactics Mobile Communication System Based on UWB with Double Binary Turbo Code in Multi-User Interference Environments (다중 사용자 간섭이 존재하는 환경에서 이중이진 터보부호를 이용한 UWB 기반의 전술이동통신시스템 성능)

  • Kim, Eun-Cheol;Seo, Sung-Il;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.1
    • /
    • pp.39-50
    • /
    • 2010
  • In this paper, we analyze and simulate the performance of a tactics mobile communication system based on ultra wide band (UWB) in multi-user interference (MUI) environments. This system adopts a double binary turbo code for forward error correction (FEC). Wireless channel is modeled a modified Saleh and Valenzuela (SV) model. We employ a space time block coding (STBC) scheme for enhancing system performance. System performance is evaluated in terms of bit error probability. From the simulation results, it is confirmed that the tactics mobile communication system based on UWB, which is encoded with the double binary turbo code, can achieve a remarkable coding gain with reasonable encoding and decoding complexity in multi-user interference environments. It is also known that the bit error probability performance of the tactics mobile communication system based on UWB can be substantially improved by increasing the number of iterations in the decoding process for a fixed cod rate. Besides, we can demonstrate that the double binary turbo coding scheme is very effective for increasing the number of simultaneous users for a given bit error probability requirement.

Analysis of Turbo Coding and Decoding Algorithm for DVB-RCS Next Generation (DVB-RCS Next Generation을 위한 터보 부복호화 방식 분석)

  • Kim, Min-Hyuk;Park, Tae-Doo;Lim, Byeong-Su;Lee, In-Ki;Oh, Deock-Gil;Jung, Ji-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.9C
    • /
    • pp.537-545
    • /
    • 2011
  • This paper analyzed performance of three dimensional turbo code and turbo ${\Phi}$ codes proposed in the next generation DVB-RCS systems. In the view of turbo ${\Phi}$ codes, we proposed the optimal permutation and puncturing patterns for triple binary input data. We also proposed optimal post-encoder types and interleaving algorithm for three dimensional turbo codes. Based on optimal parameters, we simulated both turbo codes, and we confirmed that the performance of turbo ${\Phi}$ codes are better than that of three dimensional turbo codes. However, the complexity of turbo ${\Phi}$ is more complex than that of three dimensional turbo codes by 18%.

Low Latency Encoding Algorithm for Duo-Binary Turbo Codes with Tail Biting Trellises (이중 입력 터보 코드를 위한 저지연 부호화 알고리즘)

  • Park, Sook-Min;Kwak, Jae-Young;Lee, Kwy-Ro
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.2
    • /
    • pp.47-51
    • /
    • 2009
  • The low latency encoder for high data rate duo-binary turbo codes with tail biting trellises is considered. Encoder hardware architecture is proposed using inherent encoding property of duo-binary turbo codes. And we showed that half of execution time as well as the energy can be reduced with the proposed architecture.

Study on Performance of Double Binary Turbo Code for Power Line Communication Systems Base on OFDM (OFDM 기반의 전력선 통신 시스템에서 이중 이진 터보 부호 성능 연구)

  • Kim, Jin-Young;Cha, Jae-Sang;Kim, Seong-Kweon;Lee, Jong-Joo;Kim, Jae-Hyun;Lee, Chong-Hoon;Kim, Eun-Cheol
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.3
    • /
    • pp.193-199
    • /
    • 2009
  • Powerline communications (PLC) technology has been discussed and analyzed as a highly potential candidate of wireline access network solutions. In this paper, performance of double binary turbo coded orthogonal frequency division multiplexing (OFDM) system is analyzed and simulated in power line communications channel. In order to make power line channel environments, Bernoulli-Gaussian noise is considered. The performance is evaluated in terms of bit error probability. From the simulation results, it is demonstrated that the double binary turbo coding scheme offers considerable coding gain with reasonable encoding complexity. It is also shown that the system performance can be substantially improved by increasing the number of iterations.

  • PDF

Iterative Coding for High Speed Power Line Communication Systems (고속 전력선 통신 시스템을 위한 반복 부호화 기법)

  • Kim, Yo-Cheol;Cho, Bong-Youl;Lee, Jae-Jo;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.5
    • /
    • pp.185-192
    • /
    • 2011
  • In this paper, we simulate and analyze performance of iterative coding scheme, double binary turbo code, for high speed power line communication (PLC) systems. PLC system has hostile environment for high speed data transmission, so error correction method is necessary to compensate effects of PLC channel. We employ the PLC model proposed by M. Zimmerman and Middleton Class A interference model, and system performance is evaluated in terms of bit error rate (BER). From the simulation results, we confirm double binary turbo code provides considerable coding gains to PLC system and BER performance is significantly improved as the number of iteration increase. It is also confirmed that BER performance increases as code rate is lager, while it decreases as the code rate is smaller.

Low Power Turbo Decoder Design Techniques Using Two Stopping Criteria (이중 정지 기준을 사용한 저 전력 터보 디코더 설계 기술)

  • 임호영;강원경;신현철;김경호
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.9
    • /
    • pp.39-48
    • /
    • 2004
  • Turbo codes, whose performance in bit error rate is close to the Shannon limit, have been adopted as a part of standard for the third-generation high-speed wireless data services. Iterative Turbo decoding results in decoding delay and high power consumption. As wireless communication systems can only use limited power supply, low power design techniques are essential for mobile device implementation. This paper proposes new effective criteria for stopping the iteration process in turbo decoding to reduce power consumption. By setting two stopping criteria, decodable threshold and undecodable threshold, we can effectively reduce the number of decoding iterations with only negligible error-correcting performance degradation. Simulation results show that the number of unsuccessful error-correction can be reduced by 89% and the number of decoding iterations can be reduced by 29% on the average among 12500 simulations when compared with those of an existing typical method.