• Title/Summary/Keyword: 이중유공슬릿케이슨

Search Result 2, Processing Time 0.017 seconds

Reflection and Hydraulic Characteristics inside Two-Chamber Vertical Slit Caisson in 3-D Oblique Wave Field (3차원 경사입사파동장에서 이중유공슬릿케이슨 내부의 수리특성 및 반사특성)

  • Hur, Dong-Soo;Lee, Jun;Lee, Woo-Dong
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.227-235
    • /
    • 2014
  • Using a 3-D numerical scheme (LES-WASS-3D) that considered wave-structure-sandy seabed interactions in a 3-D wave field, we analyzed the wave reflection and hydraulic characteristics inside a slit caisson with two chambers in a 3-D oblique wave field. To verify the 3-D numerical analysis method suggested in this study, we compared the numerical results with existing experimental results and found good agreement. The numerical analysis revealed that a standing wave field is generated on the front side of the slit caisson due to the effect of wave reflection. For incident waves propagating perpendicular to the slit caisson, the nodes and anti-nodes of the standing wave are apparent and symmetrical. However, in an oblique wave field, as the incident wave angle decreases, the nodes and anti-nodes of the standing wave become ambiguous and unsymmetrical. It was also found that the wave reflection coefficient decreases as the incident wave angle decreases. It can be pointed out that as the incident wave angle decreases, the turbulent intensity in the chamber increases. Thereby, the increased wave energy dissipation by the increased turbulent intensity reduces the rate of wave reflection. In addition, a strong turbulent intensity generally occurs in the first chamber.

The Reflection Characteristics of a Perforated Slit Caisson with Two Chambers (이중 유공슬릿 케이슨에 의한 반사특성)

  • Hur, Dong-Soo;Lee, Woo-Dong;Lee, Hyeon-Woo;Kim, In-Chul
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.60-67
    • /
    • 2010
  • Recently, there has been an increase in the construction of various types of coastal structures for efficient wave dissipation, seawater exchange, and so on. Among these, a perforated slit caisson has been widely used to reduce the reflected wave energy and the wave pressure on the structure. Therefore, many studies on the wave force on a caisson, as well as the wave reflection from it, have been carried out with laboratory experiments and numerical analyses, considering it as a 2-D problem. However, because a structure like a perforated slit caisson has a variable 3-D shape, waves forces should be considered as a 3-D problem. Therefore, in this paper, a fully-nonlinear 3-D numerical model (LES-WASS-3D) is proposed to examine the reflection characteristics of a perforated slit caisson with two chambers. The numerical model, LES-WASS-3D, was verified in a 3-D wave field by a comparison with existing experimental data for wave reflection coefficients. Then, using the numerical results, the reflection from a perforated slit caisson with two chambers was examined in relation to wave steepness, chamber width, and the shape/porosity of perforated slit.