• Title/Summary/Keyword: 이중분사시스템

Search Result 15, Processing Time 0.035 seconds

Experimental Study of Spray Characteristics on the Throttleable Dual Manifold Injector (이중 매니폴드 가변추력 분사기의 분무 특성에 관한 실험적 연구)

  • Youn, Jung-Soo;Kim, Sung-Hyuk;Yoon, Young-Bin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.3
    • /
    • pp.22-30
    • /
    • 2011
  • There is a many way of LPRE throttling methods, high-pressure-drop systems, dual-manifold injector, gas injection, multiple chambers, pulse modulation and movable injector components. Especially dual-manifold injector is essentially combines two fixed-area injectors into a common structure, with independent feed systems controlling flow to each injector manifold. In this paper, using indirect photography and liquid film thickness measurement with various injection pressure and tangential entry diameter to decide stability of spray over a wide thrust range in dual manifold injector.

An Experimental Study on Characteristics of Twin Spray Ejected from Two Pre Filming Airblast Atomizer (두 개의 공기충돌형 연료분사장치로부터 분사되는 이중분무특성에 관한 실험적 연구)

  • Park, Seung-Gyu;Han, Jae-Seob;Kim, Yoo;Park, Jung-Bae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.6-6
    • /
    • 1998
  • 항공기용 가스터빈 및 일반적인 산업용 분무시스템에서는 많은 양의 분사액체를 미립화 시키고 시스템의 연속적인 운전과 유지를 편리하게 하기 위하여 여러 개의 분사노즐을 열로 설치하여 동시에 분사하도록 하고 있다. 이렇게 동시에 분사할 경우, 노즐간에 거리가 충분히 크지 않으면 개별적으로 분사된 분무들이 서로 합해져서 하나의 연합된 분무군이 형성된다. 이렇게 Two element에 의해서 형성된 spray는 공급압력이 증가함에 따라 관성력이 증가하게 되어 중심부분에서 액막 혹은 액적상태로서 충돌이 발생하여 복잡한 분무특성을 가질 것이다. 따라서, 연합된 분무군의 특성을 이해하는 것은 응용의 측면에서 매우 중요하다고 할 수 있다.

  • PDF

Performance Assessment of the Dual-Throat Nozzle Thrust Vector Control in a 3D Rectangular Nozzle (3D 직사각형 노즐에서 이중 스 로트 노즐 스러스트 벡터 제어의 성능 평가)

  • Wu, Kexin;Kim, Tae Ho;Kim, Heuy Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.4
    • /
    • pp.12-24
    • /
    • 2020
  • The dual-throat nozzle is an extremely effective method in the thrust vectoring control field, utilizing another convergent section to connect with the divergent part of the conventional convergent-divergent nozzle. In the present research, the numerical simulation is conducted to investigate the effects of the injection angle on thrust vectoring performance in a 3D supersonic nozzle. Five injection angles are discussed and core performance variations are analyzed, including the deflection angle, injected mass flow ratio, system resultant thrust ratio, efficiency, Mach number contour and streamline on the symmetry plane, and Mach number contours at different slices. Meaningful conclusions are offered for fighter jet designers.

Investigation of helium injection cooling to liquid oxygen chamber (헬륨분사를 통한 액체산소 냉각의 이론적 고찰 및 해석과 시험의 비교)

  • Gwon, O-Seong;Jo, Nam-Gyeong;Jeong, Yong-Gap;Lee, Jung-Yeop
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.134-142
    • /
    • 2006
  • Sub-cooling of cryogenic propellant by helium injection is one of the most effective methods for suppressing bulk boiling and keeping sub-cooled liquid oxygen before rocket launch. In order to design the cooling system, understanding of the limitations of heat and mass transfer is required. In this paper, an analytical model for the helium injection system is presented. This model's main feature is the representation of bubbling system using finite-rate heat transfer and instantaneous mass transfer concept. With this simplified approach, the effect of helium injection to liquid oxygen system under several circumstances is examined. Experimental results along with simulations of single bubble rising in liquid oxygen and bubbling system are presented with various helium injection flow rates, and with change of oxygen chamber pressure.

  • PDF

Measurement of Transient Heat Transfer Coefficient of In-cylinder Gas in the Hydrogen Fueled Engine with Dual Injection System (이중분사식 수소기관 연소실내 가스의 순간열전달계수의 측정)

  • Wei, Shin-Whan;Kim, Yun-Young;Lee, Jong-Tai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.12 no.4
    • /
    • pp.267-275
    • /
    • 2001
  • To clear the differences of heat transfer coefficient of in-cylinder gas with fuel properties, the transient heat transfer coefficient of hydrogen gas is investigated by using the hydrogen fueled engine. The measured results were also compared with those of gasoline engine and several empirical equations. Transient heat transfer coefficients were determined by measurements of unsteady heat flux and instantaneous wall temperature in the cylinder head. As the main results, it is shown that transient heat transfer coefficients have remarkable differences according to fuel properties, and it's value for hydrogen engine is twice higher than that of gasoline engine. It means that equation of heat transfer coefficient that the effect of fuel properties is considered sufficiently, is needed to analyze or simulate the gas engine performance.

  • PDF

A Development of Injector Performance Analysis System by Injection Condition Converter (분사조건변환기에 따른 인젝터 성능 분석 시스템 개발)

  • Son, Il-Moon;Lee, Joong-Soon
    • Journal of ILASS-Korea
    • /
    • v.11 no.4
    • /
    • pp.228-233
    • /
    • 2006
  • There are two types of electric controlled fuel injection system in the gasoline engines of common vehicles. One is fuel return system and the other is fuel returnless system according to the methods of controlling injection pressures. It is important to understand the characteristics of these system in loaming and studying of engine, but it is very difficult without a special equipment in reality. The purpose of this paper is to develop the emulation system that can be compensated with the amount of injection fuel according to various driving conditions, battery voltage, cooling water temperature, and engine speed, may be appeared in real driving, and especially can analyze the difference between the electric signal controlling the amount of injection fuel and its result, and nullity injection duration. With the developed system, we can conveniently set various and completed driving condition and so can acquire the useful information such as non-uniformity rate and mass of injection fuel using waveform analysis and measurement modules. It must be a very useful and sophisticated system to instruct and learn the features and operating states of injection system, and to study f3r improving the performance of it.

  • PDF

간극 조절 가능한 메탈젯 시스템의 설계에 관한 연구

  • 이택민;조정대;김현섭;함영복;김광영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.241-241
    • /
    • 2004
  • 프린팅 기법은 크게 젯팅(Jetting) 기법과 코팅(Coating) 기법으로 나눌 수 있는데, 이중 젯팅 기법은 액체 상태의 재료를 노즐을 통하여 분사하는 기법을 말하며, 그 방식으로는 전하제어형, 확산형, 자성 잉크형 등의 연속 방식, 피에조형, 전기열 변환형, 방전형, 고체잉크형, 정전흡입형 등의 DOD 방식, 잉크 미스트형, 스프레이형 등의 기타 방식으로 나누어 볼 수 있다. 젯팅 공정을 이용하여 폴리머 계열을 2차원 흑은 3차원 형상으로 제작하는 것은, 기존의 잉크젯 분사시스템을 수정 보완하는 것으로도 기술적으로 가능하다.(중략)

  • PDF

Study on Fluidic Thrust Vector Control Based on Dual-Throat Concept (이중목 노즐 개념에 기반한 유체 추력벡터제어에 관한 연구)

  • Wu, Kexin;Kim, Heuy Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.1
    • /
    • pp.24-32
    • /
    • 2019
  • Numerical simulations were carried out in a supersonic nozzle to investigate the possibility of using dual-throat nozzle concept in fluidic thrust vector control. Validation of the methodology showed an excellent agreement between the computational fluid dynamics results and the experimental data available, which were based on the well-assessed SST $k-{\omega}$ turbulence mode. The deflection angle, system resultant thrust ratio, and thrust efficiency were investigated in a wide range of nozzle pressure ratios and injection pressure ratios. The performance variations of the dual-throat nozzle thrust vector control system were clearly illustrated with this two-dimensional computational domain. Some constructive conclusions were obtained that may be used as a reference for further studies in the fluidic thrust vector control field.

Analysis of a Continuous and Instantaneous Vacuum Drying System for Drying and Separation of Suspended Paricles in Waste Solvent (폐용제에 함유된 입자의 건조 및 분리용 연속식 순간 진공건조시스템 해석)

  • 구재현;이재근
    • Resources Recycling
    • /
    • v.9 no.4
    • /
    • pp.28-36
    • /
    • 2000
  • This study describes to analyze the characteristics for separation and recovery of both the dried particles and the purified solvent from the waste solvent through the vaporization process by the continuous and instantaneous vacuum drying system. The vacuum drying system for the waste solvents recovery consists of a feeding pump, a double pipe heat exchanger, a vacuum spray chamber, and a condenser. The vacuum drying system heats the waste solvent to the vapor in the double pipe heat exchanger and the expanded vapor is sprayed at the end of the tube. The vaporized solvent in the condenser are recovered. The particles in the waste solvent are separated and dried from the vapor in the vacuum spray chamber. Performance evaluation of the vacuum drying system was conducted using the mixture of the dried pigment particles and benzene or alkylbenzene as test samples. For the mixture of 10 wt% pigment particles an 90% benzene, the recovery efficiency of benzene was 88% with the purity of 99% and the recovery efficiency of dried particles was 94% with the moisture of 1.1 wt%. The size of pigment particles was decreased from $6.5\mu\textrm{m}$ to $5.6\mu\textrm{m}$ in diameter due to high speed spraying and dispersion in the vacuum drying system during drying process. Therefore, the vacuum drying system showed to be an effective method for separating particles and solvent in the waste solvent.

  • PDF

Analysis of Fast Injection Response Characteristics Between Solenoid and Piezo-Driven Injector (솔레노이드 및 피에조 인젝터의 고속분사 응답성 해석)

  • Jo, In-Su;Lee, Jung-Hyup;Lee, Jin-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.10
    • /
    • pp.971-977
    • /
    • 2012
  • It is well known that the performance of a diesel injector is directly related to the power, emission, and fuel consumption of the diesel combustion engine. In this study, the injection response characteristics of CRDi injectors driven by a solenoid coil and a piezoceramic were investigated by using the AMESim simulation code. Some analytical parameters such as the fuel pressure and hole diameter were considered. From this study, it was shown that the piezo-driven injector had a faster response and had better control capability than the solenoid-driven injector. In addition, it was found that the piezo-driven injector can be utilized more effectively in a multiple injection scheme than a solenoid-driven injector.