• Title/Summary/Keyword: 이족 보행 로봇

Search Result 115, Processing Time 0.022 seconds

Biped Walking of Hydraulic Humanoid Robot on Inclined Floors (유압식 이족 휴머노이드 로봇의 경사면 보행 연구)

  • Kim, Jung-Yup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.3
    • /
    • pp.258-266
    • /
    • 2012
  • This paper describes a biped walking algorithm for a hydraulic humanoid robot on inclined floors. To realize stable and robust biped walking, the walking algorithm was divided into five control strategies. The first is a joint position control strategy. This strategy is for tracking desired joint position trajectories with a gain switching. The second is a multi-model based ZMP (Zero Moment Point) control strategy for dynamic balance. The third is a walking pattern flow control strategy for smooth transition from step to step. The fourth is an ankle compliance control, which increases the dynamic stability at the moment of floor contact. The last is an upright pose control strategy for robust walking on an inclined floor. All strategies are based on simple pendulum models and include practical sensory feedback in order to implement the strategies on a physical robot. Finally, the performance of the control strategies are evaluated and verified through dynamic simulations of a hydraulic humanoid on level and inclined floors.

Development of Biped Walking Robot with Stable Walking (안정적 보행을 갖는 이족 보행 로봇의 개발)

  • Seo, Chang-Jun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.3 no.2
    • /
    • pp.82-90
    • /
    • 2008
  • In this paper, we introduce a biped walking robot which can do static walking with 22 degree-of-freedoms. The developed biped walking robot is 480mm tall and 2500g, and is constructed by 22 RC servo motors. Before making an active algorithm, we generate the motions of robot with a motion simulator developed using C language. The two dimensional simulator is based on the inverse kinematics and D-H transform. The simulator implements various motions as we input the ankle's trajectory. Also the simulator is developed by applying the principle of inverted pendulum to acquisite the center of gravity. As we use this simulator, we can get the best appropriate angle of ankle or pelvic when the robot lifts up its one side leg during the walking. We implement the walking motions which is based on the data(angle) getting from both of simulators. The robot can be controlled by text shaped command through RF signal of wireless modem which is connected with laptop computer by serial cable.

  • PDF

Optimal Trajectory Generation for Walking Up a Staircase of a Biped Robot Using Genetic Algorithm (유전 알고리듬을 이용한 이족 보행 로봇의 계단 오르기 최적 보행 궤적 생성)

  • Kim, Eun-Su;Kim, Man-Seak;Kim, Jong-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.2
    • /
    • pp.373-381
    • /
    • 2009
  • In this paper, a humanoid robot is simulated and implemented to walk up a staircase using the blending polynomial and genetic algorithm. Using recently developed kinematics for a biped robot, four schemes for walking up a staircase are newly proposed and simulated separately. For the two schemes of landing a swaying leg on the upper stair, the joint trajectories of seven motors are particularly optimized to generate an energy-minimal motion with the guarantee of walking stability. The proposed scheme of walking upstair is validated by an experiment with a small humanoid robot.

Dynamic Walking Control of Biped Walking Robot using Intelligent Control Method and Sensor Interface (지능형 제어기법 및 센서 인터페이스를 이용한 이족 보행 로봇의 동적보행 제어)

  • Kho, Jaw-Won;Lim, Dong-Cheol
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.56 no.4
    • /
    • pp.161-167
    • /
    • 2007
  • This paper introduces a dynamic walking control of biped walking robot using intelligent sensor interface and shows an intelligent control method for biped walking robot. For the dynamic walking control of biped walking robot, serious motion controllers are used. They are main controller(using INTEL80C296SA MPU), sub controller(using TMS320LF2406 DSP), sensor controller(using Atmega128 MPU) etc. The used sensors are gyro sensor, tilt sensor, infrared sensor, FSR sensor etc. For the feasibility of a dynamic walking control of biped walking robot, we use the biped walking robot which has twenty-five degrees of freedom(D.O.F.) in total. Our biped robot is composed of two legs of six D.O.F. each, two arms of five D.O.F. each, a waist of two D.O.F., a head of one D.O.F.

Development of Child-Sized Humanoid Robot (아동 크기 휴머노이드 로봇의 개발)

  • Lee, Ki-Nam;Park, Jang-Hyun;Ryoo, Young-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.1
    • /
    • pp.24-28
    • /
    • 2013
  • In this paper, a procedure of design and development of a child-sized humanoid robot is described. The design concept for a humanoid robot was proposed and the mechanism of the humanoid robot which is more than 1 meter tall was designed by using 3D design tools. By considering the lightweight of the robot, the hardware for the robot was designed for optimal performance. The frames and links of the robot designed by 3D design tools was manufactured through precision machining with the material which is light and have a good strength. The manufactured child-sized humanoid robot was experimented with basic motions applied inverse kinematics and balance control, and the performance of the motions were verified.

Dynamic Gait embody using angular acceleration for a Walking Robot (각가속도를 이용한 이족 로봇의 동적 걸음새 구현)

  • Park, Jae-Mun;Park, Seung-Yub;Ko, Bong-Jin
    • Journal of Advanced Navigation Technology
    • /
    • v.11 no.2
    • /
    • pp.209-216
    • /
    • 2007
  • In this paper, we embodied posture-stabilization and dynamic gait in a walking robot. 10 RC servo motors are used to operate joints. And the joints have enough moving ranges suitable in any walking pattern. Each joint trajectory is generated by cubic spline interpolation method and the stability of the trajectory is verified by using Zero Moment Point from the robot modeling. To avoid complex structure and expression, Zero Moment Point of the biped robot used angular acceleration is suggested. To measure the stability of the biped robot, Tilt sensor and gyro sensor are used. Finally, Personal Computer is used computer monitoring and data processing. Most of computation, such as 10 RC servo motor control, joint trajectory generating, ZMP compensation, sense measuring, etc, was used Digital Signal Processor.

  • PDF

Analysis of a Dynamic PLS of the Biped Walking RGO-Robot for a Trainning of Rehabilitation (척수마비 재활훈련용 이족보행 RGO 로봇의 Dynam ic PLS 생체역학적 특성분석 <응력해석과 FEM을 중심으로>)

  • 김명회;장대진;박창일;박영필
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.136-141
    • /
    • 2002
  • This paper presents a design and a control of a biped walking RGO-robot and dynamic walking simulation for this system. The biped walking RGO-robot is distinguished from other one by which has a very light-weight and a new AGO type with servo motors. The gait of a biped walking RGO-robot depends on the constrains of mechanical kinematics and initial posture. The stability of dynamic walking is investigated by ZMP(Zero Moment Point) of the biped walking RGO-robot. It is designed according to a human wear type and is able to accomodate itself to human environments. The joints of each leg are adopted with a good kinematic characteristics. To test of the analysis of joint kinematic properties, we did the strain stress analysis of dynamic PLS and the study of FEM with a dynamic PLS. It will be expect that the spinal cord injury patients are able to train effectively with a biped walking AGO-robot.

  • PDF

Redundancy Trajectory Generation for Biped Robot Manipulators (2족 보행로봇을 위한 여유자유도 궤적 생성)

  • Yeon, Je-Sung;Park, Jong-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1014-1022
    • /
    • 2009
  • A biped robot in locomotion can be regarded to be kinetically redundant in that the link-chain from its foot on the ground to its swing foot has more degrees of freedom that needed to realize stable bipedal locomotion. This paper proposes a new method to generate a trajectory for bipedal locomotion based on this redundancy, which directly generates a locomotion trajectory at the joint level unlike some other methods such as LIPM (linear inverted-pendulum mode) and GCIPM (gravity-compensated inverted-pendulum mode), each of which generates a trajectory of the center of gravity or the hip link under the assumption of the dominance of the hip-link inertia before generating the trajectory of the whole links at the joint level. For the stability of the trajectory generated in the proposed method, a stability condition based on the ZMP (zero-moment point) is used as a constraint as well as other kinetic constraints for bipedal motions. A 6-DOF biped robot is used to show how a stable locomotion trajectory can be generated in the sagittal plane by the proposed method and to demonstrate the feasibility of the proposed method.

Control System Design of Pelvis Platform for Biped Walking Stability (이족보행 안전성을 위한 골반기구의 제어시스템 설계)

  • Kim, Su-Hyeon;Yang, Tae-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.3
    • /
    • pp.306-314
    • /
    • 2009
  • The pelvis platform is the mechanical part which accomplishes the activities of diminishing the disturbances from the lower body and maintaining a balanced posture. When a biped robot walks, a lot of disturbances and irregular vibrations are generated and transmitted to the upper body. As there are some important machines and instruments in the upper body or head such as CPU, controller units, vision system, etc., the upper part should be isolated from disturbances or vibrations to functions properly and finally to improve the biped stability. This platform has 3 rotational degrees of freedom and is able to maintain balanced level by feedback control system. Some sensors are fused for more accurate estimation and the control system which integrates synchronization and active filtering is simulated on the virtual environment.

A Study on Joint Compliance for a Biped Robot (이족 보행 로봇의 관절부위 유연특성 예측에 관한 연구)

  • Lee, Ki-Joo;Yim, Hong-Jae;Kang, Yun-Seok;Park, Joong-Kyung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.559-562
    • /
    • 2005
  • When we analyze dynamics of a multi body system, a compliance of joints must be considered. If the virtual model for CAE(computer adied engineering) analysis is not considered compliance, the result of CAE analysis will be very different from the actual result. Especially in a biped walking robot, a compliance can be caused in joints of a walking robot, and the robot may lose walking stability. This paper proposes a compliance modeling method and the effectiveness of the compliance model is verified through experiments.

  • PDF