• Title/Summary/Keyword: 이정 혼합 퇴적물

Search Result 6, Processing Time 0.024 seconds

A Preliminary Study of Flume Experiments on the Flow Velocity for Initial Formation of Bedforms on Bimodal Sand-sized Sediments (이정 사질 퇴적물의 층면구조 형성 속도에 대한 수조 실험 예비 연구)

  • Kim, Hyun Woo;Choi, Su Ji;Choi, Ji Soo;Kwon, Yoo Jin;Lee, Sang Cheol;Kwak, Chang Hwan;Kwon, Yi Kyun
    • Journal of the Korean earth science society
    • /
    • v.37 no.4
    • /
    • pp.218-229
    • /
    • 2016
  • The bedform stability diagram indicates the shape and size of bedforms that will occur to a given grain size and flow velocity. The diagram has been constructed from experimental data which have been mostly acquired by flume experiments. Generally, the flume experiments have been performed on well sorted sediments with unimodal grain size distribution, in order to understand relationship between grain size and flow velocity. According to the diagram, a ripple structure initiates to be formed from lower flow regime flat bed, as the flow velocity increases on the surface of fine-sand or medium-sand sediments. This study aims to verify that the experimental result of bedform stability diagram will be reproduced in our flume experimental systems, and also to confirm that the result is consistent not only on well-sorted sand sediments but also on poorly-sorted sand sediments with bimodal grain size distribution. The experimental results in this study show that initiation of 2D or 3D ripple structure on poorly-sorted sand sediments requires higher flow velocity and shear stress than those for initiation of the structure on well-sorted sand sediments. In general, carbonate sediments are characterized by poor sorting due to inactive hydraulic sorting and bimodal grain size distribution with allochems and matrices. The results suggest that the carbonate depositional system possibly need a higher flow velocity for initial formation of 2D or 3D bedform structures. The reason might be the fact that pulling off and lifting of a grain in poorly sorted sediments require more energy due to sorting, friction, stabilization, armour effects, and their complex interaction. This preliminary study warrants additional experiments under various conditions and more accurate analysis on the relationship between formation of bedforms and grain size distribution.

Characteristics of Metal Distribution in the Sediment in Kyeonggi Bay, Korea (경기만 퇴적물의 중금속 분포 특성)

  • Lee, Jong-Hyeon;Yi, Jung-Suk;Kim, Bum-Su;Lee, Chang-Bok;Koh, Chul-Hwan
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.3 no.3
    • /
    • pp.103-111
    • /
    • 1998
  • This paper reports the sediment geochemistry and its relation to the grain size distribution in Kyeonggi Bay, Korea. Sediment samples were collected from 90 stations during the cruise crossing the bay in December 1995. Variables investigated were the sediment grain size, organic carbon content, and concentrations of AI, Fe, Mn, V, Co, Ni, Cr, Zn and Cu in the sediment. We followed the change in these variables by comparing the data obtained from this region in 1981. Distribution pattern of sediment grain size was modified from that in 1981 in some places. Near the Shihwa Dike which was completed in 1994, sediment had got finer grained. Sediment facies changed from fine to mixed facies near Youngjong Island where the tidal flat has been reclaimed for airport construction. Contents of organic matter and metals in the sediment were mostly dependent upon the sediment grain size, but an exception was found in the harbor area. The sediment in the Incheon North Harbor showed higher accumulation of organic matter and metals such as Ni, Cr, Zn and Cu.

  • PDF

Distribution of Sedimentation Environments and Benthic Macro-fauna Communities in Habitats and Non-habitats of Zostera marina on the Yeongheung-do Tidal Flats, West Coast of Korea (한국의 서해안 영흥도 조간대의 거머리말(Zostera marina) 서식지와 비서식지에서 퇴적환경과 대형저서동물군집의 분포)

  • Bae, Jong Il;Shin, Hyen Chul;Hwang, Sung Il;Lee, Jeng Ho
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.2
    • /
    • pp.107-116
    • /
    • 2018
  • In this study, the distribution of sedimentary environment and benthic macro-fauna in habitats and non-habitats of Zostera marina were investigated. The purpose of this study was to obtain basic data about the sedimentary environment and benthic macro-fauna in the habitats and non-habitats of Z. marina. Sand was dominant within habitat environments, whereas the non-habitats were predominantly composed of silt. As a result, the habitats of Z. marina have a different grain size and organic matter content compared to the non-habitats. These differences in the sedimentary environment were expected to influence the species composition of benthic animals. Benthic communities in the habitats of Z. marina showed a higher density and a greater number of species than in the non-habitats. As a result of an ecological index evaluation, the species diversity index (H') was $3.44{\pm}0.10$ for the habitat; the non-habitat was analyzed as $2.34{\pm}0.35$. It was also found that the stability of community in the habitats was higher than that in the non-habitats. The cluster analysis also clearly showed that habitats and non-habitats of Z. marina have distinct characteristics.

3-D Dispersive Transport Model for Turbidity Plume induced by Dredging Operation (준설 탁도플륨의 3차원 이송확산 거동 모형)

  • Kang, See Whan;Kang, In Nam;Lee, Jung Lyul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5B
    • /
    • pp.557-562
    • /
    • 2006
  • In order to predict the dispersion of suspended sediment arising from dredging operation in port and navigation channel, a hybrid model for dispersive transport of turbidity plume was developed using Lee's(1998) hybrid method. Using hybrid modeling scheme advection-diffusion equation was solved by the forward particle-tracking method for advection process and by the fixed Eulerian grid method for diffusion process. To examine numerical model simulation in accuracy, the simulated results for 1-D, 2-D, and 3-D cases were compared with the analytical solutions including Kuo, et al's (1985) 3-D mathematical model. The model results were in a good agreement with the analytical solutions and mathematical model for the dispersion of turbidity plume.

Petrological Study on the Cretaceous Volcanic Rocks in the southwest Ryeongnam Massif: (1) the Mt. Moonyu volcanic mass, Seungju-gun (영남육괴 남서부에 분포하는 백악기 화산암류에 대한 암석학적 연구: (1) 승주군 문유산 화산암복합체)

  • Kim, Young-La;Koh, Jeong-Seon;Lee, Jeong-Hyun;Yun, Sung-Hyo
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.57-82
    • /
    • 2008
  • The volcanic sequence of the late Cretaceous Moonyu volcanic mass which distributed in the southwestern part of Ryeongnam massif, can be divided into felsic pyroclastic rocks, andesite and andesitic pyroclastic rocks, rhyolite in ascending order. The earliest volcanic activity might commence with intermittent eruptions of felsic magma during deposition of volcaniclastic sediments. Explosive eruptions of felsic pyroclastic rocks began with ash-falls, to progressed through pumice-falls and transmitted with dacitic to rhyolitic ash-flows. Subsequent andesite and andesitic pyroclastic rocks were erupted and finally rhyolite was intruded as lava domes along the fractures near the center of volcanic mass. Petrochemical data show that these rocks are calc-alkaline series and have close petrotectonic affinities with subduction-related continental margin arc volcanic province. Major element compositions range from medium-K to high-K. Petrochemical variation within the volcanic sequence can be largely accounted for tractional crystallization processes with subordinate mixing. The most mafic rocks are basaltic andesite, but low MgO and Ni contents indicate they are fractionated by fractional crystallization from earlier primary mafic magma, which derived from less than 20% partial melting of ultramafic rocks in upper mantle wedge. Based on the stratigraphy, the early volcanic rocks are zoned from lower felsic to upper andesitic in composition. The compositional zonation of magma chamber from upper felsic to lower andesitic, is interpreted to have resulted from fractionation within the chamber and replenishment by an influx of new mafic magma from depth. Replenishment and mixing is based on observations of disequilibrium phenocrysts in volcanic rocks. REE patterns show slight enrichment of LREE with differentiation from andesite to rhyolite. Rhyolite in the final stage can be derived from calc-alkaline andesite magma by fractional crystallization, but it might have underwent crustal contamination during the fractional crystallization.

Lithium Distribution in Thermal Groundwater: A Study on Li Geochemistry in South Korean Deep Groundwater Environment (온천수 내 리튬 분포: 국내 심부 지하수환경의 리튬 지화학 연구)

  • Hyunsoo Seo;Jeong-Hwan Lee;SunJu Park;Junseop Oh;Jaehoon Choi;Jong-Tae Lee;Seong-Taek Yun
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.729-744
    • /
    • 2023
  • The value of lithium has significantly increased due to the rising demand for electric cars and batteries. Lithium is primarily found in pegmatites, hydrothermally altered tuffaceous clays, and continental brines. Globally, groundwater-fed salt lakes and oil field brines are attracting attention as major sources of lithium in continental brines, accounting for about 70% of global lithium production. Recently, deep groundwater, especially geothermal water, is also studied for a potential source of lithium. Lithium concentrations in deep groundwater can increase through substantial water-rock reaction and mixing with brines. For the exploration of lithim in deep groundwater, it is important to understand its origin and behavior. Therefore, based on a nationwide preliminary study on the hydrogeochemical characteristics and evolution of thermal groundwater in South Korea, this study aims to investigate the distribution of lithium in the deep groundwater environment and understand the geochemical factors that affect its concentration. A total of 555 thermal groundwater samples were classified into five hydrochemical types showing distinct hydrogeochemical evolution. To investigate the enrichment mechanism, samples (n = 56) with lithium concentrations exceeding the 90th percentile (0.94 mg/L) were studied in detail. Lithium concentrations varied depending upon the type, with Na(Ca)-Cl type being the highest, followed by Ca(Na)-SO4 type and low-pH Ca(Na)-HCO3 type. In the Ca(Na)-Cl type, lithium enrichment is due to reverse cation exchange due to seawater intrusion. The enrichment of dissolved lithium in the Ca(Na)-SO4 type groundwater occurring in Cretaceous volcanic sedimentary basins is related to the occurrence of hydrothermally altered clay minerals and volcanic activities, while enriched lithium in the low-pH Ca(Na)-HCO3 type groundwater is due to enhanced weathering of basement rocks by ascending deep CO2. This reconnaissance geochemical study provides valuable insights into hydrogeochemical evolution and economic lithium exploration in deep geologic environments.