• Title/Summary/Keyword: 이음부 결함

Search Result 142, Processing Time 0.021 seconds

Analysis of Shear Behavior of Shear Key for Concrete Track on Railway Bridge Considering Construction Joint (타설 경계면을 고려한 철도교 콘크리트궤도 전단키의 전단 거동 해석)

  • Lee, Seong-Cheol;Kang, Yun-Suk;Jang, Seung Yup
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.3
    • /
    • pp.341-350
    • /
    • 2016
  • Concrete track on railway bridges should be designed to effectively respond to the movement of the superstructure of the bridge. In the design procedure, shear keys are generally placed on the protection concrete layer (PCL) before casting the concrete track so the shear force due to slip between the concrete track and the bridge super-structure can be transferred. In this paper, a nonlinear structural analysis procedure that considers the construction joint has been developed to predict the shear behavior of a shear key. With the developed analysis procedure, it was possible to predict the shear force-shear slip response at the construction joint in a shear key by considering the friction of concrete surface and the dowel action of the rebars. The analysis results showed good agreement with the test results for 4 specimens.

Evaluation of Stress Reduction of Continuous Welded Rail of Sliding Slab Track from Track-Bridge Interaction Analysis (궤도-교량 상호작용 해석에 의한 슬라이딩 슬래브 궤도의 장대레일 응력 저감 효과 분석)

  • Lee, Kyoung Chan;Jang, Seung Yup;Jung, Dong-Ki;Byun, Hyung-Kyoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.5
    • /
    • pp.1179-1189
    • /
    • 2015
  • Continuous welded rail on bridge structure experiences typically a large amount of additional longitudinal axial forces due to longitudinal track-bridge interaction under temperature and traction/braking load effect. In order to reduce the additional axial forces, special type of fastener, such as ZLR and RLR or rail expansion joint should be applied. Sliding slab track system is known to reduce the effect of track-bridge interaction by the application of a sliding layer between slab track and bridge structure. This study presents track-bridge interaction analysis results of the sliding slab track and compares them with conventional fixed slab track on bridges. The result shows that the sliding slab track can significantly reduce the additional axil forces of the continuously welded rail, and the difference is more significant for long and continuous span bridge.

Characterization of deterioration of concrete lining in tunnel structures (터널 콘크리트 라이닝 구조물의 성능저하 특성)

  • Kim, Dong-Gyou;Jung, Ho-Seop;Bae, Gyu-Jin;Shin, Hyu-Soung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.4
    • /
    • pp.387-394
    • /
    • 2009
  • The objective of this study is to evaluate the durability and deterioration of concrete lining in the seven conventional tunnels. These tunnels were constructed about 40~70 years ago, and closed about 10~40 years ago. The field investigation and various laboratory testings were performed for this study. It was observed from the visual, examinations that the concrete linings of 7 tunnels were severely deteriorated, such as, cracks, leakages, desquamation, and exploitations. The compressive strengths obtained from rebound hardness method and uniaxial compressive strength test on core specimens largely differed depending on the locations in the tunnel. The maximum compressive strength of concrete lining was greater about 2 times than the minimum compressive strength of concrete lining in the same tunnel. The results of micro-structural analysis showed that the substances deteriorating the concrete lining, such as ettringite and thaumasite, were detected in the concrete lining of tunnel.

Characteristics of Strength Development of Ultra-High Performance Concrete according to Curing Condition (초고성능 콘크리트의 양생 조건에 따른 강도 발현 특성)

  • Park, Jong-Sup;Kim, Young-Jin;Cho, Jeong-Rae;Jeon, Se-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.295-304
    • /
    • 2013
  • Ultra-High Performance Concrete (UHPC) has recently been one of the most active research fields in Korea as well as in foreign countries, because it can contribute to a longer life and economic efficiency of structures. Although precast-type UHPC fabricated in a factory is preferable in terms of quality control and reduction of construction period, there exist, even in the precast structure, some parts that need to be cast in-place such as the joints between precast segments. In the cast-in-place UHPC, however, it is probable that an optimum curing condition can hardly be realized in contrast to the factory production. In this study, therefore, the trend of compressive strength development of UHPC was experimentally investigated by assuming various inferior curing conditions that may be anticipated at a construction site. Concrete specimens were fabricated and cured under different conditions with the variables such as curing temperature, delay time before the initiation of curing, duration of curing time and moisture condition. The strengths were compared with those of the specimens cured by standard high temperature steam. Through the analysis of the test results, some minimum requirements for curing have been proposed that are required when the UHPC is cast in-place. It is expected, through this study, that practical use of UHPC in construction sites can be increased.

Image Comparison of Curved and Flat Panel Detectors for the Application of Digital Radiography Testing in Pipe Welds (배관 원둘레 이음 용접부의 디지털 방사선 투과 검사 적용을 위한 커브드 및 평면형 검출기의 영상 비교)

  • Yang, Jin-Wook;Cho, Kap-Ho;Nam, Mun-Ho
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.5
    • /
    • pp.585-594
    • /
    • 2022
  • The detector for digital radiography testing, which is currently mainly used, consists of a detector with a flat structure, making it impossible to fully adhere to the digital radiography testing of the test object with curvature. In this study, a curved panel detector capable of adhering to curvature was fabricated to improve the quality of the digital image during the digital radiography testing of piping welds at industrial sites, and digital radiography images using flat and curved panel detectors were obtained for 6in pipes with different nominal thickness. As a result of the experiment, it was confirmed that the flat panel detector does not fully adhere to the pipe, resulting in a gap between the outer part of the pipe and the detector, resulting in a difference in the unsharpness and diffusion of the digital image. On the other hand, it was confirmed that the curved panel detector minimizes the gap between the pipe outer part and the detector, so that digital image diffusion is less than that of the flat panel detector. The higher the confidence of the image, the lower the quality and error in reading, so it is believed that higher quality images can be obtained than conventional flat panel detectors when using detectors that can be closely attached to the inspection object.

Optimization of Resistance Spot Weld Condition for Single Lap Joint of Hot Stamped 22MnB5 by Taking Heating Temperature and Heating Time into Consideration (핫스템핑 공정에서 가열온도 및 유지시간을 고려한 22MnB5의 단일겹치기 저항 점용접 조건 최적화)

  • Choi, Hong-Seok;Kim, Byung-Min;Park, Geun-Hwan;Lim, Woo-Seung;Lee, Sun-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.10
    • /
    • pp.1367-1375
    • /
    • 2010
  • In this study, optimization of the process parameters of the resistance spot welding of a sheet of aluminum-coated boron alloyed steel, 22MnB5, used in hot stamping has been performed by a Taguchi method to increase the strength of the weld joint. The process parameters selected were current, electrode force, and weld time. The heating temperature and heating time of 22MnB5 are considered to be noise factors. It was known that the variation in the thickness of the intermetallic compound layer between the aluminum-coated layer and the substrate, which influences on the formation of nugget, was generated due to the difference of diffusion reaction according to heating conditions. From the results of spot weld experiment, the optimum weld condition was determined to be when the current, electrode force, and weld time were 8kA, 4kN, and 18 cycles, respectively. The result of a test performed to verify the optimized weld condition showed that the tensile strength of the weld joint was over 32kN, which is considerably higher than the required strength, i.e., 23kN.

Mechanical Properties and Stress-Strain Model of Re-Bars Coldly Bent and Straightened (굽힌 후 편 철근의 기계적 성질과 응력-변형률 모델)

  • Chun, Sung-Chul;Tak, So-Young;Ha, Tae-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.2
    • /
    • pp.195-204
    • /
    • 2012
  • In the construction of high-rise buildings, bent re-bars are manually straightened to connect slabs to core-walls, which are usually cast before floor structures. During cold bending and straightening of re-bars, plastic deformation causing work hardening, Bauschinger effect and aging hardening is unavoidable. Tensile tests of coldly bent and straightened re-bars were conducted with test parameters of grade, diameter, and bend radius of re-bars as well as age between bending and straightening. Test results showed that proportional limits were lower and strain hardening occurred without yield plateaus. Inside and outside of re-bars with compression and tension deformations, respectively, during bending showed lower yield points due to Bauschinger effect and no yield plateaus due to work hardening, respectively. When re-bar grade was higher, yield point became significantly lower where Grade 400 re-bars had yield strengths lower than specified yield strength of 400 MPa. Because the surface of re-bar has higher strength than the core of re-bar, Bauschinger effect was more obvious for higher-grade re-bars. When age between bending and straightening was greater, yield strength increased and elongation decreased (i.e. embrittlement occurs). Using measured data, stress-strain relationship for straightened re-bars was developed based on Ramberg-Osgood model, which can be used to evaluate stiffness of joints when straightened re-bars are applied.

The Effect of Blast Cleaning for Steel Bridge Painting on Fatigue Behavior of Out-of-Plane Gusset Welded Joints (강교 도장용 블라스트 처리가 면외거셋 용접이음의 피로거동에 미치는 영향)

  • Kim, In Tae;Le, Van Phuoc Nhan;Kim, Kwang Jin;Lee, Dong Uk
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.5
    • /
    • pp.583-590
    • /
    • 2008
  • Blasting has been applied in newly-built steel structures for cleaning forged surfaces and increasing the adhesive property of applied painting systems. However, the effect of the blast cleaning on fatigue behavior of welded joints is not clear. In this paper, fatigue tests were carried out on out-of-plane gusset welded joints and the effect of the blast cleaning on the fatigue behavior was studied. The curvature radius at the weld toe of the surface-treated specimens by using the blast method is larger than that of as-welded specimens. By the blast cleaning compressive residual stresses were induced into weld toes. The experimental results showed that the fatigue life of surface-treated specimens is longer than that of as-welded specimens, even though the fatigue life of surface-treated specimens and that of as-welded specimens are not clearly different in the high stress range. About a 160% increase in fatigue limit could be realized by using blast cleaning.

A Study on the Hull Form of Fishing Boats around 1900 in South Coast of Korea (한국 남해안의 1900년경 어선의 선형에 관한 연구)

  • 고장권
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.3
    • /
    • pp.244-248
    • /
    • 2000
  • It was investigated and analized on the construction and hull form for the ordinary fishing boat of south coast in Korea, and then analogized on the shipbuilding technology of fishing boat and fishing type around 1900 by B-spline form parameter method. The results obtained can be summarize as follows : (1) It was known that the boats used in this study have more narrow hull form than that of ancient fishing boats and their hull form was improved around 1900. (2) Keel was composed of bar keel with angle cross section. The stem corner have a material of bar stem and makes a sharp pointed stem. (3) Shell plate was jointed by the rabbetted clinker joint method. (4) It was investigated that anchovy drag net fishing boat has high L/B, L/D, B/D value as compared with drift gill net fishing boat. (5) Two boats have a good stability and particularly anchovy drag net fishing boat have a better stability value in comparison to the drift gill net fishing boat.

  • PDF

Estimation of the Roadbed Settlement and Bearing Capacity According to Radius of Curve and Cant in Railroad (철도의 곡선반경 및 캔트에 따른 노반의 침하 및 지지력 산정)

  • Jeon, Sang-Soo;Eum, Gi-Young;Kim, Jae-Min
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.1 s.24
    • /
    • pp.29-38
    • /
    • 2007
  • The research on the track performance and stability of the tilting-train was performed and the settlement of the roadbed was estimated as the tilting train was being operated on the rail joint under the allowable velocity subjected to the track performance and the stability of the tilting-train. Since the impact on the continuous welded rail (CWR) induced by the tilting-train loading is different from the impact on the rail joint, it needs to investigate the settlement of the roadbed beneath the CWR. In this study, when the tilting-train is being operated on the CWR under the allowable velocity subjected to the track performance and the stability of the tilting-train, the settlement and bearing capacity of the roadbed beneath the CWR have been evaluated using numerical analysis and compared with those beneath the rail joint. The numerical results show that the settlements of the roadbed beneath CWR and rail joint are amount to 71.2% and 88.8% of the allowable settlement, respectively. And the stresses are amount to 10.4% and 12.1% of the allowable bearing capacity, respectively.