• Title/Summary/Keyword: 이원추진제 추진시스템

Search Result 26, Processing Time 0.028 seconds

A CONSIDERATION OF MATHEMATICAL THERMAL MODELING OF BIPROPELLANT PROPULSION SYSTEM (이원추진제 추진시스템 수학적 열 모텔링 고찰)

  • Chae, J.W.;Han, C.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.163-165
    • /
    • 2007
  • The authors have reviewed many mathematical thermal mode lings of bipropellant propulsion system in literatures to gather basic data for developing a computer program which analyses the performance of bipropellant propulsion system. In this paper COMS and its propulsion system is briefly introduced for understanding. The set of first order nonlinear differential equations is reviewed and considered as candidate equations for the program development.

  • PDF

A Survey of the Current Components of Bipropellant Propulsion System for Geosynchronous Satellites (정지궤도 인공위성용 이원추진시스템 부품 조사)

  • Chae, Jong-Won
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.6 no.1
    • /
    • pp.82-89
    • /
    • 2008
  • In this paper a survey was conducted to find out the current components of bipropellant propulsion system for geosynchronous satellites. The purpose of the survey is to list up the alternative components corresponding to the components of chemical propulsion system (CPS) of the communication, ocean, and meteorological satellite (COMS), so that the criterion of survey is whether the alternative components can be applicable to COMS CPS or not. The survey results are described in component-by-component way and the short descriptions of each component and its companies are added. This paper can be useful for beginning a market survey and have a good understanding of the components of bipropellant propulsion system.

  • PDF

액체로켓엔진 단일추진제 가스발생기 설계에 관한 고찰

  • 김명철;윤덕진;김승우
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.30-30
    • /
    • 2000
  • 액체로켓엔진의 단일추진제 가스발생기는 연료공급 시스템의 터보펌프를 구동시키기 위한 작동가스 생성을 목적으로 사용된다. 고체추진제 가스발생기와 비교할 경우 작동시간이 보다 길고 연소생성물에 의한 터빈 블레이드의 삭마가 없으며 제어가 용이하므로 초기 액체로켓엔진 개발시부터 사용되어 왔다. 80년대 이후 개발된 액체로켓엔진은 이원추진제 가스발생기 또는 연소가스 FEEDBACK 시스템을 채용하고 있지만 단일추진제 가스발생기는 과산화수소수 또는 하이드라진과 같은 별도의 추진제 공급 시스템을 필요로 하는 단점에도 불구하고 상대적으로 낮은 온도의 무연 작동 가스를 발생하므로 가스발생기 자체를 위한 냉각시스템을 제거 또는 최소화 시켜 간단한 구조로 전체 시스템 설계를 가능하게 하므로 중소형 액체로켓엔진에 사용되고 있다.

  • PDF

Feasibility Study of Chemical Propulsion System for Moon Explorer (화학추진시스템의 달탐사위성 적용 가능성 연구)

  • Han, Cho-Young;Kim, Bang-Yeop
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.4
    • /
    • pp.22-29
    • /
    • 2009
  • Development of Moon Explorer-1 (orbiter) is supposed to be commenced in 2017 and launched in 2020. In case of Moon Explorer-2 (lander), it would be slated to start in 2021 and launch in 2025. In this paper conceptual feasibility studies are conducted for the propulsion system applicable to a Moon Explorer. In the first place the availability of monopropellant/bipropellant/electric propulsion system is examined with domestic as well as overseas precedents. Secondly ${\Delta}V$ is estimated by the mission analysis and the propellant budget is calculated accordingly. Subsequently feasibility of a chemical propulsion system for a Moon Explorer is evaluated.

Propulsion System for Moon Explorer (달탐사위성 추진시스템)

  • Han, Cho-Young;Lee, Ho-Hyung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.155-158
    • /
    • 2008
  • Development of Moon Explorer-1 (orbiter) is supposed to be commenced in 2017 and launched in 2020. In case of Moon Explorer-2 (lander), it would be slated to start in 2021 and launch in 2025. For this reason it is taken for granted to investigate a fundamental propulsion system for a Moon Explorer. In this paper conceptual feasibility and comparison studies are proposed for the propulsion system applicable to a Moon Explorer. Availability of monopropellant/bipropellant/electric propulsion system is compared and analysed as well with precedents overseas. As a result possible candidates for a Moon Explorer propulsion system are suggested.

  • PDF

A Development Trend Study of Bipropellant Rocket Engine for Orbit Transfer and Attitude Control of Satellite (인공위성 궤도전이 및 자세제어용 이원추진제 로켓엔진의 개발현황)

  • Jang, Yo Han;Lee, Kyun Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.1
    • /
    • pp.50-60
    • /
    • 2015
  • A propulsion system of a satellite provides a necessary thrust to reach to the final orbit after a separation from a launch vehicle. Also, it supplies pulse moments to maintain the satellite in a mission orbit and for its attitude controls during a mission life time. The present study investigates the development trend of bipropellant rocket engines for an orbit transfer and an attitude control of a satellite using monomethylhydrazine and hydrazine for fuel and dinitrogen tetroxide for oxidizer to derive fundamental specifications which are necessary for domestic development researches. Also, their major performance characteristics are summarized.

Study for Design and Performance Characteristics of Small Bipropellant Thruster using $H_2O_2$/Kerosene (과산화수소/케로신 소형 이원추진제 추력기의 설계 및 성능특성에 관한 연구)

  • Kim, Jung-Hoon;Lee, Jae-Won;Jeon, Young-Jin;Chae, Byoung-Chan;Jeon, Jun-Su;Kim, Yoo;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.41-45
    • /
    • 2009
  • The small-sized bi-propellant thruster using a high concentrated hydrogen peroxide and kerosene as the oxidizer and fuel was designed and fabricated in this study. The water cold-flow test was performed to verify the performance characteristics of the injector. The mixing head assembly used in this model thruster was designed as a structure to combine igniter, injectors and film cooling, which are capable of regulating each mass flowrate. This maximize the experimental verification and efficiency of the design optimization. Finally, the mass flowrate and spray pattern of injector were evaluated by the hydraulic test. Therefore, the design validity of the mixing head was verified.

  • PDF

Types and Characteristics of Chemical Propulsion Systems for Repersentative Korean Satellites (국내의 대표적 인공위성 화학추진시스템의 형식 및 특성)

  • Han, Cho-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.8
    • /
    • pp.747-752
    • /
    • 2007
  • Domestic satellite development programme is generally classified into two categories: COMS as GEO satellite and KOMPSAT as LEO one. Each satellite has the on-board propulsion system fulfilling its own mission requirements. The COMS propulsion system provides the thrust and torque required for the insertion into GEO, attitude and orbit control/adjustment of spacecraft. It is the well-known Chemical Propulsion System(CPS) using bipropellants. On the other hand, the monopropellant propulsion system is employed in KOMPSAT, and its main role is on-station attitude control excluding the orbit transfer function. In this study, these two representative propulsion systems are compared and analysed as well, in terms of essential differences and important characteristics.

Development of the Liquid Rocket Engine of 400Ib Thrust (추력 400 파운드급 액체 로켓엔진 개발)

  • 채연석;윤웅섭;이수용;김영목;오승협;최장섭;우유철;김영수
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.49-55
    • /
    • 1995
  • 이원 액체추진제를 사용하는 인공위성용 로켓 추진기관의 개발을 위한 핵심부품별 개념 및 상세설계, 성능해석, 성능실험용 시작품의 제작, 수류 성능실험 및 지상 연소시험이 수행되었다. 인공위성 궤도조종용 로켓 추진기관은 1.38MPa의 연소실 압력으로 4초동안 1780N(400$Ib_f$)의 평균추력을 내도록 설계되었으며, 산화제로는 질산, 연료로는 트리 에틸렌 아민(triethylene amine, TEA)과 자이리딘(xylidine)의 혼합물로 구성된 접촉발화형 이원 액체추진제를 사용하고, 추진제를 가압방식에 의해 연소실에 분사하는 방법으로 분사충돌, 미립화, 그리고 기화 후 연소시키게 된다. 효율적인 설계를 위하여 설계전용 소프트웨어를 개발하였으며, 추진기관의 핵심부품별로 유동 시뮬레이션을 수행하고, 해석결과와 수류 실험결과를 바탕으로 설계를 수정, 보완하였다. 지상 연소시험 및 수류 성능실험을 위하여 추진제 공급장치 및 계측 시스템이 설계, 제작되었고, 시스템의 작동 및 자료처리를 위한 소프트웨어를 개발하여 수류 성능실험 및 지상 연소시험에 사용하였으며, 연소시험결과 지상 평균추력 378$Ib_f$를 발생하였다.

  • PDF

Technical Heritage of UK Chemical Propulsion Systems and COMS Bipropellant Propulsion System (영국산 화학추진시스템의 기술이력과 통신해양기상위성 이원추진제 추진시스템)

  • HAN, Cho Young
    • Journal of Aerospace System Engineering
    • /
    • v.2 no.1
    • /
    • pp.28-36
    • /
    • 2008
  • The technology relevant to a bipropellant propulsion system is quite new one in Korea, which is being transferred for the first time, with development of COMS propulsion system. It hasn't ever attempted before, and hasn't got any general idea itself as well, in Korea. The technical heritage of UK bipropellant propulsion pertinent to COMS propulsion system is scrutinised mainly. Furthermore the strong possibility of COMS CPS for the moon explorer mission is rationalised on the basis of the history of successful predecessors.

  • PDF